Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20223, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418869

RESUMO

Using a simulation based on a real, five-channel tunable LED lighting system, we show that Correlated Color Temperature (CCT) is not a reasonable predictor of the biological potency of light, whether characterized with CIE melanopic Equivalent Daylight Illuminance (mel-EDI), Equivalent Melanopic Lux (EML) (a scalar multiple of mel-EDI), or Circadian Stimulus (CS). At a photopic corneal illuminance of 300 lx and Rf ≥ 70, spectra can vary in CS from 17 to 41% across CCTs from 2500 to 6000 K, and up to 23% at a single CCT, due to the choice of spectrum alone. The CS range is largest, and notably discontinuous, at a CCT of 3500 K, the location of the inflection point of the CS model. At a photopic corneal illuminance of 300 lx and Rf ≥ 70, mel-EDI can vary from 123 to 354 lx across CCTs from 2500 to 6000 K and can vary by up to 123 lx at a fixed CCT (e.g., 196 to 319 lx at 5000 K). The range of achievable mel-EDI increases as CCT increases and, on average, decreases as color fidelity, characterized with IES TM-30 Rf, increases. These data demonstrate that there is no easy mathematical conversion between CS and mel-EDI when a spectrally diverse spectra set of spectral power distributions is considered.


Assuntos
Visão de Cores , Microftalmia , Humanos , Temperatura
2.
Opt Express ; 30(9): 14686-14708, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473208

RESUMO

Illuminant-induced metameric mismatch is an important consideration in the specification of light sources for some architectural environments, yet there is currently no standardized performance measure. The goal of this work was to evaluate two recent research proposals: the metameric uncertainty index (Rt) and the metamer mismatching color rendering index (MMCRI). To compare the relative performance of these two measures, 100,000 spectral power distributions were generated with 3, 4, 5, 6, and 7 Gaussian spectral components and spectral widths varying from 1 nm (monochromatic) to 100 nm. Both measures generally agree with the theory that broadband radiation should cause less metameric mismatch than narrowband radiation. The two measures have relatively better agreement for broadband SPDs and relatively worse agreement for narrower spectra. Despite some similarities, non-parametric statistical tests suggest that Rt and MMCRI are significantly different quantifications of illuminant-induced metameric mismatch (p < 0.0001 for all comparisons). Characteristics of the MMCRI computation that are potentially problematic for applied lighting were observed.

3.
Front Neurol ; 12: 630553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584531

RESUMO

At its best, human-centric lighting considers the visual and non-visual effects of light in support of positive human outcomes. At its worst, it is a marketing phrase used to healthwash lighting products or lighting design solutions. There is no doubt that environmental lighting contributes to human health, but how might one practice human-centric lighting given both the credible potential and the implausible hype? Marketing literature is filled with promises. Technical lighting societies have summarized the science but have not yet offered design guidance. Meanwhile, designers are in the middle, attempting to distinguish credible knowledge from that which is dubious to make design decisions that affect people directly. This article is intended to: (1) empower the reader with fundamental understandings of ways in which light affects health; (2) provide a process for human-centric lighting design that can dovetail with the decision-making process that is already a part of a designer's workflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...