Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710096

RESUMO

Ubiquinone (UQ) is a redox polyisoprenoid lipid found in the membranes of bacteria and eukaryotes that has important roles, notably one in respiratory metabolism, which sustains cellular bioenergetics. In Escherichia coli, several steps of the UQ biosynthesis take place in the cytosol. To perform these reactions, a supramolecular assembly called Ubi metabolon is involved. This latter is composed of seven proteins (UbiE, UbiG, UbiF, UbiH, UbiI, UbiJ, and UbiK), and its structural organization is unknown as well as its protein stoichiometry. In this study, a computational framework has been designed to predict the structure of this macromolecular assembly. In several successive steps, we explored the possible protein interactions as well as the protein stoichiometry, to finally obtain a structural organization of the complex. The use of AlphaFold2-based methods combined with evolutionary information enabled us to predict several models whose quality and confidence were further analyzed using different metrics and scores. Our work led to the identification of a "core assembly" that will guide functional and structural characterization of the Ubi metabolon.

2.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015640

RESUMO

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Humanos , Camundongos , Ratos , Animais , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/terapia , Sistema da Enzima Desramificadora do Glicogênio/genética , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Transgenes
3.
J Agric Food Chem ; 71(22): 8497-8507, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221163

RESUMO

Promiscuous enzymes show great potential to establish new-to-nature pathways and expand chemical diversity. Enzyme engineering strategies are often employed to tailor such enzymes to improve their activity or specificity. It is paramount to identify the target residues to be mutated. Here, by exploring the inactivation mechanism with the aid of mass spectrometry, we have identified and mutated critical residues at the dimer interface region of the promiscuous methyltransferase (pMT) that converts psi-ionone to irone. The optimized pMT12 mutant showed ∼1.6-4.8-fold higher kcat than the previously reported best mutant, pMT10, and increased the cis-α-irone percentage from ∼70 to ∼83%. By one-step biotransformation, ∼121.8 mg L-1 cis-α-irone was produced from psi-ionone by the pMT12 mutant. The study offers new opportunities to engineer enzymes with enhanced activity and specificity.


Assuntos
Metiltransferases , Norisoprenoides , Norisoprenoides/química , Metiltransferases/genética , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Mutagênese , Especificidade por Substrato
4.
Methods Mol Biol ; 2553: 57-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227539

RESUMO

Many biological molecules are assembled into supramolecular complexes that are necessary to perform functions in the cell. Better understanding and characterization of these molecular assemblies are thus essential to further elucidate molecular mechanisms and key protein-protein interactions that could be targeted to modulate the protein binding affinity or develop new binders. Experimental access to structural information on these supramolecular assemblies is often hampered by the size of these systems that make their recombinant production and characterization rather difficult. Computational methods combining both structural data, molecular modeling techniques, and sequence coevolution information can thus offer a good alternative to gain access to the structural organization of protein complexes and assemblies. Herein, we present some computational methods to predict structural models of the protein partners, to search for interacting regions using coevolution information, and to build molecular assemblies. The approach is exemplified using a case study to model the succinate-quinone oxidoreductase heterocomplex.


Assuntos
Biologia Computacional , Proteínas , Biologia Computacional/métodos , Complexo II de Transporte de Elétrons/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química
5.
Nat Commun ; 13(1): 7421, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456636

RESUMO

Metabolic engineering has become an attractive method for the efficient production of natural products. However, one important pre-requisite is to establish the biosynthetic pathways. Many commercially interesting molecules cannot be biosynthesized as their native biochemical pathways are not fully elucidated. Cis-α-irone, a top-end perfumery molecule, is an example. Retrobiosynthetic pathway design by employing promiscuous enzymes provides an alternative solution to this challenge. In this work, we design a synthetic pathway to produce cis-α-irone with a promiscuous methyltransferase (pMT). Using structure-guided enzyme engineering strategies, we improve pMT activity and specificity towards cis-α-irone by >10,000-fold and >1000-fold, respectively. By incorporating the optimized methyltransferase into our engineered microbial cells, ~86 mg l-1 cis-α-irone is produced from glucose in a 5 l bioreactor. Our work illustrates that integrated retrobiosynthetic pathway design and enzyme engineering can offer opportunities to expand the scope of natural molecules that can be biosynthesized.


Assuntos
Carbono , Biossíntese de Proteínas , Norisoprenoides , Metiltransferases
6.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142227

RESUMO

Ubiquinone (UQ) is a polyisoprenoid lipid found in the membranes of bacteria and eukaryotes. UQ has important roles, notably in respiratory metabolisms which sustain cellular bioenergetics. Most steps of UQ biosynthesis take place in the cytosol of E. coli within a multiprotein complex called the Ubi metabolon, that contains five enzymes and two accessory proteins, UbiJ and UbiK. The SCP2 domain of UbiJ was proposed to bind the hydrophobic polyisoprenoid tail of UQ biosynthetic intermediates in the Ubi metabolon. How the newly synthesised UQ might be released in the membrane is currently unknown. In this paper, we focused on better understanding the role of the UbiJ-UbiK2 heterotrimer forming part of the metabolon. Given the difficulties to gain functional insights using biophysical techniques, we applied a multiscale molecular modelling approach to study the UbiJ-UbiK2 heterotrimer. Our data show that UbiJ-UbiK2 interacts closely with the membrane and suggests possible pathways to enable the release of UQ into the membrane. This study highlights the UbiJ-UbiK2 complex as the likely interface between the membrane and the enzymes of the Ubi metabolon and supports that the heterotrimer is key to the biosynthesis of UQ8 and its release into the membrane of E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipídeos , Modelos Moleculares , Ubiquinona/metabolismo
7.
Protein Sci ; 31(6): e4327, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35634776

RESUMO

N-acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant-specific Lysin Motif Receptor-Like Kinases (LysM-RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo-chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM-RLK LYR3 (MtLYR3) as a specific LCO-binding protein. We also showed that the absence of LCO binding to LYR3 of the non-mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site-directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3-LysM3 by those of MtLYR3-LysM3 allowed the recovery of high-affinity LCO binding in experimental radioligand-binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern.


Assuntos
Quitina , Medicago truncatula , Quitina/metabolismo , Quitosana , Medicago truncatula/genética , Simulação de Acoplamento Molecular , Oligossacarídeos , Tirosina/metabolismo
8.
Biomater Sci ; 9(22): 7444-7455, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34647546

RESUMO

The development of protein and microorganism engineering have led to rising expectations of biotechnology in the design of emerging biomaterials, putatively of high interest to reduce our dependence on fossil carbon resources. In this way, cellulose, a renewable carbon based polysaccharide and derived products, displays unique properties used in many industrial applications. Although the functionalization of cellulose is common, it is however limited in terms of number and type of functions. In this work, a Carbohydrate-Binding Module (CBM) was used as a central core to provide a versatile strategy to bring a large diversity of functions to cellulose surfaces. CBM3a from Clostridium thermocellum, which has a high affinity for crystalline cellulose, was flanked through linkers with a streptavidin domain and an azide group introduced through a non-canonical amino acid. Each of these two extra domains was effectively produced and functionalized with a variety of biological and chemical molecules. Structural properties of the resulting tripartite chimeric protein were investigated using molecular modelling approaches, and its potential for the multi-functionalization of cellulose was confirmed experimentally. As a proof of concept, we show that cellulose can be labelled with a fluorescent version of the tripartite protein grafted to magnetic beads and captured using a magnet.


Assuntos
Clostridium thermocellum , Nanopartículas , Sítios de Ligação , Celulose , Polissacarídeos
9.
Bioorg Chem ; 116: 105245, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482168

RESUMO

The GH-51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus (TxAbf) possesses versatile catalytic properties, displaying not only the ability to hydrolyze glycosidic linkages but also to synthesize furanobiosides in α-l-Araf and ß-d-Galf series. Herein, mutants are investigated to evaluate their ability to perform self-condensation, assessing both yield improvements and changes in regioselectivity. Overall yields of oligo-α-l-arabino- and oligo-ß-d-galactofuranosides were increased up to 4.8-fold compared to the wild-type enzyme. In depth characterization revealed that the mutants exhibit increased transfer rates and thus a hydrolysis/self-condensation ratio in favor of synthesis. The consequence of the substitution N216W is the creation of an additional binding subsite that provides the basis for an alternative acceptor substrate binding mode. As a result, mutants bearing N216W synthesize not only (1,2)-linked furanobiosides, but also (1,3)- and even (1,5)-linked furanobiosides. Since the self-condensation is under kinetic control, the yield of homo-disaccharides was maximized using higher substrate concentrations. In this way, the mutant R69H-N216W produced oligo-ß-d-galactofuranosides in > 70% yield. Overall, this study further demonstrates the potential usefulness of TxAbf mutants for glycosynthesis and shows how these might be used to synthesize biologically-relevant glycoconjugates.


Assuntos
Bacillales/enzimologia , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Configuração de Carboidratos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Furanos/síntese química , Furanos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade
10.
J Chromatogr A ; 1648: 462151, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992992

RESUMO

Multi-component adsorption of proteins still requires a better understanding of local phenomena to improve the development of predictive models. In this work, all-atom Molecular Dynamics (MD) simulations were used to investigate the influence of protein charge distribution on the adsorption capacity. The simultaneous adsorption of α-chymotrypsin and lysozyme on a cation exchanger, SP Sepharose FF, was studied through MD simulations and compared to macroscopic isotherm experiments. It appears that the charge distribution is a relevant information to better understand specific phenomena, such as a multilayer adsorption caused by the particular electrostatic profile of α-chymotrypsin. Therefore, MD simulations seem to be an interesting way to visualize and highlight these behaviors.


Assuntos
Cromatografia por Troca Iônica/métodos , Propriedades de Superfície , Adsorção , Quimotripsina/química , Simulação de Dinâmica Molecular , Muramidase/química
11.
Front Microbiol ; 11: 579521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281771

RESUMO

Plant α-galactosides belonging to the raffinose family oligosaccharides (RFOs) and considered as prebiotics, are commonly degraded by α-galactosidases produced by the human gut microbiome. In this environment, the Ruminococcus gnavus E1 symbiont-well-known for various benefit-is able to produce an original RgAgaSK bifunctional enzyme. This enzyme contains an hydrolytic α-galactosidase domain linked to an ATP dependent extra-domain, specifically involved in the α-galactoside hydrolysis and the phosphorylation of the glucose, respectively. However, the multi-modular relationships between both catalytic domains remained hitherto unexplored and has been, consequently, herein investigated. Biochemical characterization of heterologously expressed enzymes either in full-form or in separated domains revealed similar kinetic parameters. These results were supported by molecular modeling studies performed on the whole enzyme in complex with different RFOs. Further enzymatic analysis associated with kinetic degradation of various substrates followed by high pressure anionic exchange chromatography revealed that catalytic efficiency decreased as the number of D-galactosyl moieties branched onto the oligosaccharide increased, suggesting a preference of RgAgaSK for RFO's short chains. A wide prevalence and abundance study on a human metagenomic library showed a high prevalence of the RgAgaSK encoding gene whatever the health status of the individuals. Finally, phylogeny and synteny studies suggested a limited spread by horizontal transfer of the clusters' containing RgAgaSK to only few species of Firmicutes, highlighting the importance of these undispersed tandem activities in the human gut microbiome.

12.
Microbiome ; 8(1): 141, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004077

RESUMO

BACKGROUND: Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS: Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for ß-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION: By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota/fisiologia , Microfluídica , Bactérias/genética , Humanos , Masculino , Metagenômica , Microbiota/genética , Pessoa de Meia-Idade
13.
Microb Genom ; 6(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32667876

RESUMO

Mannoside phosphorylases are involved in the intracellular metabolization of mannooligosaccharides, and are also useful enzymes for the in vitro synthesis of oligosaccharides. They are found in glycoside hydrolase family GH130. Here we report on an analysis of 6308 GH130 sequences, including 4714 from the human, bovine, porcine and murine microbiomes. Using sequence similarity networks, we divided the diversity of sequences into 15 mostly isofunctional meta-nodes; of these, 9 contained no experimentally characterized member. By examining the multiple sequence alignments in each meta-node, we predicted the determinants of the phosphorolytic mechanism and linkage specificity. We thus hypothesized that eight uncharacterized meta-nodes would be phosphorylases. These sequences are characterized by the absence of signal peptides and of the catalytic base. Those sequences with the conserved E/K, E/R and Y/R pairs of residues involved in substrate binding would target ß-1,2-, ß-1,3- and ß-1,4-linked mannosyl residues, respectively. These predictions were tested by characterizing members of three of the uncharacterized meta-nodes from gut bacteria. We discovered the first known ß-1,4-mannosyl-glucuronic acid phosphorylase, which targets a motif of the Shigella lipopolysaccharide O-antigen. This work uncovers a reliable strategy for the discovery of novel mannoside-phosphorylases, reveals possible interactions between gut bacteria, and identifies a biotechnological tool for the synthesis of antigenic oligosaccharides.


Assuntos
Bactérias/enzimologia , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/genética , Manosídeos/metabolismo , Fosforilases/genética , Sequência de Aminoácidos , Animais , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Bovinos , Humanos , Camundongos , Oligossacarídeos/metabolismo , Fosforilases/metabolismo , Análise de Sequência de DNA , Suínos
14.
ACS Chem Biol ; 15(2): 416-424, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31990173

RESUMO

The enzymatic transamination of ketones into (R)-amines represents an important route for accessing a range of pharmaceuticals or building blocks. Although many publications have dealt with enzyme discovery, protein engineering, and the application of (R)-selective amine transaminases [(R)-ATA] in biocatalysis, little is known about the actual in vivo role and how these enzymes have evolved from the ubiquitous α-amino acid transaminases (α-AATs). Here, we show the successful introduction of an (R)-transaminase activity in an α-amino acid aminotransferase with one to six amino acid substitutions in the enzyme's active site. Bioinformatic analysis combined with computational redesign of the d-amino acid aminotransferase (DATA) led to the identification of a sextuple variant having a specific activity of 326 milliunits mg-1 in the conversion of (R)-phenylethylamine and pyruvate to acetophenone and d-alanine. This value is similar to those of natural (R)-ATAs, which typically are in the range of 250 milliunits mg-1. These results demonstrate that (R)-ATAs can evolve from α-AAT as shown here for the DATA scaffold.


Assuntos
Proteínas de Escherichia coli/metabolismo , Transaminases/metabolismo , Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Mutagênese Sítio-Dirigida , Mutação , Fenetilaminas/química , Fenetilaminas/metabolismo , Ligação Proteica , Estereoisomerismo , Especificidade por Substrato , Transaminases/genética
15.
J Chromatogr A ; 1614: 460720, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785895

RESUMO

The interest for a better understanding of ion-exchange mechanisms at the atomic level has strongly increased over the past decades. Indeed, molecular-level information about physico-chemical mechanisms could help optimizing chromatographic processes for protein purification, which are sub-optimized due to the lack of predictive models. A promising approach is based on the use of Molecular Dynamics (MD) simulations to study local phenomena inside adsorbents which can then be challenged against experimental results. In this work, macroscopic experimental data, consisting in the ion-exchange uptake of α-chymotrypsin onto SP Sepharose FF, have been compared to the adsorption behavior predicted by MD simulations. The chromatographic surface, represented as a uniform distribution of ligands with a counterion layer, in the presence of the protein was modeled using all-atom representation. The SMA formalism was used to describe single adsorption isotherms and to relate macroscopic observations with molecular simulations. Two SMA parameters based on physical principles, the characteristic charge n and the steric factor σ, have been estimated by both experiments and MD simulations. At pH 5 and NaCl concentration of 100 mM, our study shows a fairly good agreement between both results, especially for the characteristic charge. It is shown that the steric factor calculation is strongly dependent on the ligand density on the adsorbent surface, whose value must be carefully determined in order to obtain reliable predictions. In addition, four binding patches were identified as being involved in the adsorption, which have been confirmed through binding free energy calculations.


Assuntos
Resinas de Troca de Cátion/química , Quimotripsina/química , Simulação de Dinâmica Molecular , Adsorção , Cromatografia por Troca Iônica , Ligantes , Sefarose/química
16.
J Comput Aided Mol Des ; 33(10): 927-940, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31654265

RESUMO

Proteins of the independent mevalonate pathway for isoprenoid biosynthesis are important targets for the development of new antibacterial compounds as this pathway is present in most pathogenic organisms such as Mycobacterium tuberculosis, DPlasmodium falciparum and Escherichia coli, but is not present in mammalian species, including humans. Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is an important target in this pathway and the most effective DXR inhibitor to date is fosmidomycin, which is used to treat malaria and, more recently, tuberculosis. Recently, Armstrong C. M. et al. showed that a mutant of DXR, S222T, induces a loss of the fosmidomycin inhibition efficiency, even though the bacteria culture is still viable and able to produce isoprenoids. As this represents a potential fosmidomycin-resistant mutation, it is important to understand the mechanism of this apparent mutation-induced resistance to fosmidomycin. Here, we used molecular dynamics simulations and Molecular Mechanics/Poisson Boltzmann Surface Area analysis to understand the structural and energetic basis of the resistance. Our results suggest that the point mutation results in changes to the structural dynamics of an active site loop that probably protects the active site and facilitates enzymatic reaction. From the simulation analysis, we also showed that the mutation results in changes in the interaction energy profiles in a way that can explain the observed activity of the mutant protein toward the natural inhibitor deoxy-D-xylulose 5-phosphate. These results should be taken into consideration in future efforts to develop new therapeutic antibiotic compounds that target DXR.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Resistência Microbiana a Medicamentos , Escherichia coli/enzimologia , Fosfomicina/análogos & derivados , Simulação de Dinâmica Molecular , Mutação , Aldose-Cetose Isomerases/genética , Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Fosfomicina/administração & dosagem , Fosfomicina/metabolismo , Ligantes , Modelos Teóricos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Pentosefosfatos/metabolismo , Conformação Proteica
17.
Front Microbiol ; 10: 1286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275257

RESUMO

The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, ß-D-N-acetyl-glucosaminidase, ß-D-N-acetyl-galactosaminidase, and/or ß-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans.

18.
Sci Rep ; 8(1): 13540, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202114

RESUMO

Given the tight relation between protein structure and function, we present a set of methods to analyze protein topology, implemented in the VLDP program, relying on Laguerre space partitions built from series of molecular dynamics snapshots. The Laguerre partition specifies inter-atomic contacts, formalized in graphs. The deduced properties are the existence and count of water aggregates, possible passage ways and constrictions, the structure, connectivity, stability and depth of the water network. As a test-case, the membrane protein FepA is investigated in its full environment, yielding a more precise description of the protein surface. Inside FepA, the solvent splits into isolated clusters and an intricate network connecting both sides of the lipid bilayer. The network is dynamic, connections set on and off, occasionally substantially relocating traversing paths. Subtle differences are detected between two forms of FepA, ligand-free and complexed with its natural iron carrier, the enterobactin. The complexed form has more constricted and more centered openings in the upper part whereas, in the lower part, constriction is released: two main channels between the plug and barrel lead directly to the periplasm. Reliability, precision and the variety of topological features are the main interest of the method.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Enterobactina/química , Estabilidade Proteica , Relação Estrutura-Atividade , Água/química
19.
PLoS One ; 13(8): e0201323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067837

RESUMO

Among α-transglucosylases from Glycoside-Hydrolase family 70, the ΔN123-GB-CD2 enzyme derived from the bifunctional DSR-E from L. citreum NRRL B-1299 is particularly interesting as it was the first described engineered Branching Sucrase, not able to elongate glucan polymers from sucrose substrate. The previously reported overall structural organization of this multi-domain enzyme is an intricate U-shape fold conserved among GH70 enzymes which showed a certain conformational variability of the so-called domain V, assumed to play a role in the control of product structures, in available X-ray structures. Understanding the role of functional dynamics on enzyme reaction and substrate recognition is of utmost interest although it remains a challenge for biophysical methods. By combining long molecular dynamics simulation (1µs) and multiple analyses (NMA, PCA, Morelet Continuous Wavelet Transform and Cross Correlations Dynamics), we investigated here the dynamics of ΔN123-GB-CD2 alone and in interaction with sucrose substrate. Overall, our results provide the detailed picture at atomic level of the hierarchy of motions occurring along different timescales and how they are correlated, in agreement with experimental structural data. In particular, detailed analysis of the different structural domains revealed cooperative dynamic behaviors such as twisting, bending and wobbling through anti- and correlated motions, and also two structural hinge regions, of which one was unreported. Several highly flexible loops surrounding the catalytic pocket were also highlighted, suggesting a potential role in the acceptor promiscuity of ΔN123-GBD-CD2. Normal modes and essential dynamics underlined an interesting two-fold dynamic of the catalytic domain A, pivoting about an axis splitting the catalytic gorge in two parts. The comparison of the conformational free energy landscapes using principal component analysis of the enzyme in absence or in presence of sucrose, also revealed a more harmonic basin when sucrose is bound with a shift population of the bending mode, consistent with the substrate binding event.


Assuntos
Leuconostoc/enzimologia , Sacarase/química , Domínio Catalítico , Cristalografia por Raios X , Leuconostoc/química , Leuconostoc/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Sacarase/metabolismo , Sacarose/metabolismo
20.
Bioorg Med Chem ; 25(2): 684-689, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27955925

RESUMO

Hydroxamate analogs of fosfoxacin, the phosphate homolog of fosmidomycin, have been synthesized and their activity tested on Escherichia coli and Mycobacterium smegmatis DXRs. Except for compound 4b, the IC50 values of phosphate derivatives are approximately 10-fold higher than those of the corresponding phosphonates. Although their inhibitory activity on Escherichia coli DXR is less efficient than their phosphonate analogs, we report the ability of phosphate compounds to inhibit the growth of Escherichia coli. This work points out that the uptake of fosfoxacin and its analogs is taking place via the GlpT and UhpT transporters. As expected, these compounds are inefficient to inhibit the growth of M. smegmatis growth inhibition probably due to a lack of uptake.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Fosfomicina/análogos & derivados , Mycobacterium smegmatis/enzimologia , Fosfatos/farmacologia , Aldose-Cetose Isomerases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Estrutura Molecular , Fosfatos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...