Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1375441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799507

RESUMO

Background: Neurofibromin, coded by the NF1 tumor suppressor gene, is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1)-a tumor predisposition syndrome caused by a germline NF1 mutation-have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanism by which NF1 mutations lead to breast cancer tumorigenesis is not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. Approach: To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development before presenting with highly penetrant breast cancer. Results: We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient mature adipocytes in the rat mammary gland have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation, however, flow cytometry analysis did not show a change in mammary adipose-derived mesenchymal stem cell abundance. Conclusion: Collectively, this study uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary glands will create a foundation for developing early detection strategies of breast cancer among NF1 patients.

2.
Front Neurosci ; 14: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733179

RESUMO

Advances in neural engineering have brought about a number of implantable devices for improved brain stimulation and recording. Unfortunately, many of these micro-implants have not been adopted due to issues of signal loss, deterioration, and host response to the device. While glial scar characterization is critical to better understand the mechanisms that affect device functionality or tissue viability, analysis is frequently hindered by immunohistochemical tissue processing methods that result in device shattering and tissue tearing artifacts. Devices are commonly removed prior to sectioning, which can itself disturb the quality of the study. In this methods implementation study, we use the label free, optical sectioning method of second harmonic generation (SHG) to examine brain slices of various implanted intracortical electrodes and demonstrate collagen fiber distribution not found in normal brain tissue. SHG can easily be used in conjunction with multiphoton microscopy to allow direct intrinsic visualization of collagen-containing glial scars on the surface of cortically implanted electrode probes without imposing the physical strain of tissue sectioning methods required for other high resolution light microscopy modalities. Identification and future measurements of these collagen fibers may be useful in predicting host immune response and device signal fidelity.

3.
Mol Neurodegener ; 14(1): 34, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419995

RESUMO

BACKGROUND: Cell-to-cell propagation of α-synuclein (α-syn) aggregates is thought to contribute to the pathogenesis of Parkinson's disease (PD) and underlie the spread of α-syn neuropathology. Increased pro-inflammatory cytokine levels and activated microglia are present in PD and activated microglia can promote α-syn aggregation. However, it is unclear how microglia influence α-syn cell-to-cell transfer. METHODS: We developed a clinically relevant mouse model to monitor α-syn prion-like propagation between cells; we transplanted wild-type mouse embryonic midbrain neurons into a mouse striatum overexpressing human α-syn (huα-syn) following adeno-associated viral injection into the substantia nigra. In this system, we depleted or activated microglial cells and determined the effects on the transfer of huα-syn from host nigrostriatal neurons into the implanted dopaminergic neurons, using the presence of huα-syn within the grafted cells as a readout. RESULTS: First, we compared α-syn cell-to-cell transfer between host mice with a normal number of microglia to mice in which we had pharmacologically ablated 80% of the microglia from the grafted striatum. With fewer host microglia, we observed increased accumulation of huα-syn in grafted dopaminergic neurons. Second, we assessed the transfer of α-syn into grafted neurons in the context of microglia activated by one of two stimuli, lipopolysaccharide (LPS) or interleukin-4 (IL-4). LPS exposure led to a strong activation of microglial cells (as determined by microglia morphology, cytokine production and an upregulation in genes involved in the inflammatory response in the LPS-injected mice by RNA sequencing analysis). LPS-injected mice had significantly higher amounts of huα-syn in grafted neurons. In contrast, injection of IL-4 did not change the proportion of grafted dopamine neurons that contained huα-syn relative to controls. As expected, RNA sequencing analysis on striatal tissue revealed differential gene expression between LPS and IL-4-injected mice; with the genes upregulated in tissue from mice injected with LPS including several of those involved in an inflammatory response. CONCLUSIONS: The absence or the hyperstimulation of microglia affected α-syn transfer in the brain. Our results suggest that under resting, non-inflammatory conditions, microglia modulate the transfer of α-syn. Pharmacological regulation of neuroinflammation could represent a future avenue for limiting the spread of PD neuropathology.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Doença de Parkinson/tratamento farmacológico
4.
Plast Reconstr Surg ; 142(3): 303e-309e, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29878995

RESUMO

BACKGROUND: Parry-Romberg syndrome is an enigmatic craniofacial disorder characterized by progressive facial atrophy. The pathogenesis and molecular mechanisms governing Parry-Romberg syndrome have never before been described. The purpose of the current study was twofold: (1) to begin to elucidate the pathophysiology of this disease using next-generation RNA sequencing and (2) to evaluate the effect of surgical treatment on gene expression. METHODS: Patients with Parry-Romberg syndrome underwent microvascular free tissue transfer to the face to address contour deformity in both active and burned out disease. Tissue samples were collected for analysis at the time of initial microvascular free tissue transfer, and 6 months later at a scheduled revision operation. Patients presenting for rhytidectomy had tissue samples taken as control tissue. Samples from patients with disease were compared to control samples. RESULTS: Twenty-two subjects were evaluated (six control and 16 Parry-Romberg syndrome patients). All patients with Parry-Romberg syndrome underwent microvascular free tissue transfer to the face. Thirteen patients underwent scheduled 6-month revision surgery. Disease samples were distinct from healthy controls, and postoperative patient samples were more similar to healthy control samples. Parry-Romberg syndrome patients had a unique proinflammatory gene expression profile, including up-regulation of IL24, ADAMTS4, and GFCSF3. Postoperatively, more than 3400 genes were changed (p < 0.005), and of the 460 genes dysregulated in disease, 118 were changed in a corrective fashion by microvascular free tissue transfer. CONCLUSIONS: The authors describe for the first time molecular signatures in Parry-Romberg syndrome. Molecular signatures in skin became more similar to those in healthy controls and were associated with clinical improvement after microvascular free tissue transfer in Parry-Romberg syndrome.


Assuntos
Hemiatrofia Facial/cirurgia , Perfilação da Expressão Gênica , Microvasos/cirurgia , Procedimentos de Cirurgia Plástica , Pele/patologia , Proteína ADAMTS4/metabolismo , Tecido Adiposo , Biópsia , Regulação para Baixo , Hemiatrofia Facial/etiologia , Hemiatrofia Facial/patologia , Retalhos de Tecido Biológico/transplante , Fator Estimulador de Colônias de Granulócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interleucinas/metabolismo , Estudos Prospectivos , Reoperação , Análise de Sequência de RNA , Regulação para Cima
5.
ACS Nano ; 12(1): 148-157, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29253337

RESUMO

Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 µC/cm2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Grafite/química , Neurônios/fisiologia , Imagem Óptica/instrumentação , Animais , Desenho de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Modelos Moleculares
6.
Adv Funct Mater ; 27(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28989337

RESUMO

Although neuroendocrine tumors (NETs) are slow growing, they are frequently metastatic at the time of discovery and no longer amenable to curative surgery, emphasizing the need for the development of other treatments. In this study, multifunctional upconversion nanoparticle (UCNP)-based theranostic micelles are developed for NET-targeted and near-infrared (NIR)-controlled combination chemotherapy and photodynamic therapy (PDT), and bioimaging. The theranostic micelle is formed by individual UCNP functionalized with light-sensitive amphiphilic block copolymers poly(4,5-dimethoxy-2-nitrobenzyl methacrylate)-polyethylene glycol (PNBMA-PEG) and Rose Bengal (RB) photosensitizers. A hydrophobic anticancer drug, AB3, is loaded into the micelles. The NIR-activated UCNPs emit multiple luminescence bands, including UV, 540 nm, and 650 nm. The UV peaks overlap with the absorption peak of photocleavable hydrophobic PNBMA segments, triggering a rapid drug release due to the NIR-induced hydrophobic-to-hydrophilic transition of the micelle core and thus enabling NIR-controlled chemotherapy. RB molecules are activated via luminescence resonance energy transfer to generate 1O2 for NIR-induced PDT. Meanwhile, the 650 nm emission allows for efficient fluorescence imaging. KE108, a true pansomatostatin nonapeptide, as an NET-targeting ligand, drastically increases the tumoral uptake of the micelles. Intravenously injected AB3-loaded UCNP-based micelles conjugated with RB and KE108-enabling NET-targeted combination chemotherapy and PDT-induce the best antitumor efficacy.

7.
Plast Reconstr Surg Glob Open ; 5(12): e1586, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29632766

RESUMO

BACKGROUND: Clinical outcomes after nerve injury and repair remain suboptimal. Patients may be plagued by poor functional recovery and painful neuroma at the repair site, characterized by disorganized collagen and sprouting axons. Collagen deposition during wound healing can be intrinsically imaged using second harmonic generation (SHG) microscopy. The purpose of this study was to develop a protocol for SHG imaging of nerves and to assess whether collagen alignment can be quantified after nerve repair. METHODS: Sciatic nerve transection and epineural repair was performed in male rats. The contralateral nerves were used as intra-animal controls. Ten-millimeter nerve segments were harvested and fixed onto slides. SHG images were collected using a 20× objective on a multiphoton microscope. Collagen fiber alignment was calculated using CurveAlign software. Alignment was calculated on a scale from 0 to 1, where 1 represents perfect alignment. Statistical analysis was performed using a linear mixed-effects model. RESULTS: Eight male rats underwent right sciatic nerve repair using 9-0 Nylon suture. There were gross variations in collagen fiber organization in the repaired nerves compared with the controls. Quantitatively, collagen fibers were more aligned in the control nerves (mean alignment 0.754, SE 0.055) than in the repairs (mean alignment 0.413, SE 0.047; P < 0.001). CONCLUSIONS: SHG microscopy can be used to quantitate collagen after nerve repair via fiber alignment. Given that the development of neuroma likely reflects aberrant wound healing, ex vivo and/or in vivo SHG imaging may be useful for further investigation of the variables predisposing to neuroma.

8.
Biomed Microdevices ; 18(6): 105, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27819128

RESUMO

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Movimento Celular , Colágeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Fenômenos Biomecânicos , Colágeno/química , Humanos , Dispositivos Lab-On-A-Chip , Invasividade Neoplásica , Peptídeo Hidrolases/metabolismo , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...