Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32545903

RESUMO

The aim of the present work was to characterize the products obtained from the treatment of phosphogypsum residue by means of two recovery routes, and also to evaluate the concentrations of heavy metals and radionuclides in the materials obtained and their leachates. In this way, it is possible to determine how the most hazardous components of phosphogypsum behave during procedures until their stabilization through CO2 fixation. This study provides an initial estimate of the possibilities of reusing the resulting products from a health and safety risk standpoint and their potential polluting capacity. The phases resulting from the transformations were controlled, and the behaviour of standard mortars manufactured from the resulting paste lime was studied. In all cases, an additional control of the leachate products was performed.


Assuntos
Sulfato de Cálcio , Fósforo , Materiais de Construção , Metais Pesados
2.
J Chem Phys ; 145(7): 074701, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544117

RESUMO

Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

3.
Waste Manag ; 45: 412-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209345

RESUMO

The industry of phosphoric acid produces a calcium-rich by-product known as phosphogypsum, which is usually stored in large stacks of millions of tons. Up to now, no commercial application has been widely implemented for its reuse because of the significant presence of potentially toxic contaminants. This work confirmed that up to 96% of the calcium of phosphogypsum could be recycled for CO2 mineral sequestration by a simple two-step process: alkaline dissolution and aqueous carbonation, under ambient pressure and temperature. This CO2 sequestration process based on recycling phosphogypsum wastes would help to mitigate greenhouse gasses emissions. Yet this work goes beyond the validation of the sequestration procedure; it tracks the contaminants, such as trace metals or radionuclides, during the recycling process in the phosphogypsum. Thus, most of the contaminants were transferred from raw phosphogypsum to portlandite, obtained by dissolution of the phosphogypsum in soda, and from portlandite to calcite during aqueous carbonation. These findings provide valuable information for managing phosphogypsum wastes and designing potential technological applications of the by-products of this environmentally-friendly proposal.


Assuntos
Sulfato de Cálcio/química , Dióxido de Carbono/química , Metais/química , Fósforo/química , Radioisótopos/química , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Carbonato de Cálcio/química , Fracionamento Químico , Minerais/química
4.
J Hazard Mater ; 196: 431-5, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21982535

RESUMO

Industrial wet phosphoric acid production in Huelva (SW Spain) has led to the controversial stockpiling of waste phosphogypsum by-products, resulting in the release of significant quantities of toxic impurities in salt marshes in the Tinto river estuary. In the framework of the fight against global climate change and the effort to reduce carbon dioxide emissions, a simple and efficient procedure for CO(2) mineral sequestration is presented in this work, using phosphogypsum waste as a calcium source. Our results demonstrate the high efficiency of portlandite precipitation by phosphogypsum dissolution using an alkaline soda solution. Carbonation experiments performed at ambient pressure and temperature resulted in total conversion of the portlandite into carbonate. The fate of trace elements present in the phosphogypsum waste was also investigated, and trace impurities were found to be completely transferred to the final calcite. We believe that the procedure proposed here should be considered not only as a solution for reducing old stockpiles of phosphogypsum wastes, but also for future phosphoric acid and other gypsum-producing industrial processes, resulting in more sustainable production.


Assuntos
Sulfato de Cálcio/química , Dióxido de Carbono/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Resíduos Industriais/prevenção & controle , Fósforo/química , Eliminação de Resíduos/métodos , Monitoramento Ambiental , Resíduos Industriais/análise , Espanha
5.
J Hazard Mater ; 168(2-3): 1397-403, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19362775

RESUMO

This paper presents the results of the carbonation reaction of two sample types: larnite (Ca(2)SiO(4)) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO(2) for 15 min. This indicates that for this reaction time, 1t of larnite could eliminate about 550 kg of CO(2). The grain size, porosity, and specific surface area are the factors controlling the reaction.


Assuntos
Dióxido de Carbono/química , Dióxido de Silício/química , Géis , Microscopia Eletrônica de Varredura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA