Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38470733

RESUMO

In this study, Cu-doped ZnO aerogel nanoparticles with a 4% copper concentration (Cu4ZO) were synthesized using a sol-gel method, followed by supercritical drying and heat treatment. The subsequent fabrication of Cu4ZO ceramics through Spark Plasma Sintering (SPS) was characterized by X-ray diffraction (XRD), field-emission gun scanning electron microscopy (FE-SEM) equipped with EDS, and impedance spectroscopy (IS) across a frequency range of 100 Hz to 1 MHz and temperatures from 270 K to 370 K. The SPS-Cu4ZO sample exhibited a hexagonal wurtzite structure with an average crystallite size of approximately 229 ± 10 nm, showcasing a compact structure with discernible pores. The EDS spectrum indicates the presence of the base elements zinc and oxygen with copper like the dopant element. Remarkably, the material displayed distinct electrical properties, featuring high activation energy values of about 0.269 ± 0.021 eV. Complex impedance spectroscopy revealed the impact of temperature on electrical relaxation phenomena, with the Nyquist plot indicating semicircular arc patterns associated with grain boundaries. As temperature increased, a noticeable reduction in the radius of these arcs occurred, coupled with a shift in their center points toward the axis center, suggesting a non-Debye-type relaxation mechanism. Dielectric analyses revealed a temperature-driven evolution of losses, emphasizing the material's conductivity impact. Non-Debye-type behavior, linked to ion diffusion, sheds light on charge storage dynamics. These insights advance potential applications in electronic devices and energy storage.

2.
Gels ; 9(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37232975

RESUMO

Chitosan (CS) is a natural biopolymer that shows promise as a biomaterial for bone-tissue regeneration. However, because of their limited ability to induce cell differentiation and high degradation rate, among other drawbacks associated with its use, the creation of CS-based biomaterials remains a problem in bone tissue engineering research. Here we aimed to reduce these disadvantages while retaining the benefits of potential CS biomaterial by combining it with silica to provide sufficient additional structural support for bone regeneration. In this work, CS-silica xerogel and aerogel hybrids with 8 wt.% CS content, designated SCS8X and SCS8A, respectively, were prepared by sol-gel method, either by direct solvent evaporation at the atmospheric pressure or by supercritical drying in CO2, respectively. As reported in previous studies, it was confirmed that both types of mesoporous materials exhibited large surface areas (821 m2g-1-858 m2g-1) and outstanding bioactivity, as well as osteoconductive properties. In addition to silica and chitosan, the inclusion of 10 wt.% of tricalcium phosphate (TCP), designated SCS8T10X, was also considered, which stimulates a fast bioactive response of the xerogel surface. The results here obtained also demonstrate that xerogels induced earlier cell differentiation than the aerogels with identical composition. In conclusion, our study shows that the sol-gel synthesis of CS-silica xerogels and aerogels enhances not only their bioactive response, but also osteoconduction and cell differentiation properties. Therefore, these new biomaterials should provide adequate secretion of the osteoid for a fast bone regeneration.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34205707

RESUMO

This work addresses the reuse of waste products as a raw material for lime putties, which are one of the components of mortar. 1:3 Lime/sand mortars very similar to conventional construction mortars were prepared using a lime putty obtained from the treatment of phosphogypsum with sodium hydroxide. The physical, rheological and mechanical properties of this phosphogypsum-derived mortar have been studied, as well as the mineralogical composition, microstructure by scanning electron microscope (SEM) and curing process by monitoring carbonation and ultrasonic propagation velocity. Considering the negative influence of sulphates on the hardened material, the behaviour of the material after sulphates precipitation by adding barium sulphate was additionally tested. Carbonation progressed from the outside to the inside of the specimen through the porous system by Liesegang rings patterns for mortars with soluble sulphates, while the carbonation with precipitated sulphates was controlled by diffusion-precipitation. Overall, the negative influence of low-sulphate contents on the mechanical properties of mortars was verified. It must be highlighted the importance of their precipitation to obtain adequate performance.


Assuntos
Compostos de Cálcio , Materiais de Construção , Sulfato de Cálcio , Óxidos , Fósforo
4.
J Patient Saf ; 17(4): 323-330, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33994534

RESUMO

BACKGROUND: Although recommendations to prevent COVID-19 healthcare-associated infections (HAIs) have been proposed, data on their effectivity are currently limited. OBJECTIVE: The aim was to evaluate the effectivity of a program of control and prevention of COVID-19 in an academic general hospital in Spain. METHODS: We captured the number of COVID-19 cases and the type of contact that occurred in hospitalized patients and healthcare personnel (HCP). To evaluate the impact of the continuous use of a surgical mask among HCP, the number of patients with COVID-19 HAIs and accumulated incidence of HCP with COVID-19 was compared between the preintervention and intervention periods. RESULTS: Two hundred fifty-two patients with COVID-19 have been admitted to the hospital. Seven of them had an HAI origin (6 in the preintervention period and 1 in the intervention period). One hundred forty-two HCP were infected with SARS-CoV-2. Of them, 22 (15.5%) were attributed to healthcare (2 in the emergency department and none in the critical care departments), and 120 (84.5%) were attributed to social relations in the workplace or during their non-work-related personal interactions. The accumulated incidence during the preintervention period was 22.3 for every 1000 HCP and 8.2 for every 1000 HCP during the intervention period. The relative risk was 0.37 (95% confidence interval, 0.25 to 0.55) and the attributable risk was -0.014 (95% confidence interval, -0.020 to -0.009). CONCLUSIONS: A program of control and prevention of HAIs complemented with the recommendation for the continuous use of a surgical mask in the workplace and social environments of HCP effectively decreased the risk of COVID-19 HAIs in admitted patients and HCP.


Assuntos
Centros Médicos Acadêmicos , COVID-19/prevenção & controle , Infecção Hospitalar/prevenção & controle , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Adulto , COVID-19/epidemiologia , COVID-19/transmissão , Infecção Hospitalar/epidemiologia , Feminino , Humanos , Incidência , Transmissão de Doença Infecciosa do Paciente para o Profissional/estatística & dados numéricos , Masculino , Máscaras/estatística & dados numéricos , Pessoa de Meia-Idade , Recursos Humanos em Hospital/estatística & dados numéricos , Avaliação de Programas e Projetos de Saúde , Medição de Risco/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Espanha/epidemiologia
5.
Waste Manag Res ; 32(12): 1178-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25012303

RESUMO

This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry.


Assuntos
Compostos de Cálcio/síntese química , Dióxido de Carbono/química , Sequestro de Carbono , Resíduos Industriais/análise , Reciclagem/métodos , Silicatos/síntese química , Cálcio/química , Compostos de Cálcio/química , Silicatos/química
6.
J Mater Sci Mater Med ; 19(5): 2207-13, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18049874

RESUMO

Organic-inorganic hybrid materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS), methyltrimethoxysilane (MTES), synthetic wollastonite powders and polydimethylsiloxane (PDMS) in an ethanol solution. Aerogels were prepared from acid hydrolysis of TEOS and MTES with different volume ratio in ethanol, followed by addition of wollastonite powder and PDMS in order to obtain aerogels with 20 wt% of PDMS and 5 wt% of CaO of the total silica. Finally, when the wet gels were obtained, they were supercritically dried at 260 degrees C and 90 bar, in ethanol. In order to obtain its bioactivity, one method for surface activation is based on a wet chemical alkaline treatment. The particular interest of this study is that we introduce hybrid aerogels, in a 1 M solution of NaOH, for 30 s at room temperature. We evaluate the bioactivity of TEOS-MTES aerogel when immersed in a static volume of simulated body fluid (SBF). An apatite layer of spherical-shaped particles of uniform size smaller than 5 microns is observed to form on the surface of the aerogels after 25 days soaking in SBF.


Assuntos
Compostos de Cálcio/química , Dimetilpolisiloxanos/química , Silanos/química , Silicatos/química , Silicones/química , Materiais Biocompatíveis , Líquidos Corporais/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Polímeros/química , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Fatores de Tempo
7.
Langmuir ; 20(8): 3416-23, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15875876

RESUMO

Crack-free monolithic gels were prepared from different mixtures of colloidal silica with a sol solution containing tetraethoxysilane, under powerful ultrasonic agitation (sonosol). Recently, information on the structure of these gels, inferred from N2 adsorption and mercury intrusion porosimetry, was presented. In the present paper, these data were used to construct structural models of the gels using Monte Carlo calculations on the basis of random close packing (RPC) premises. In addition, the structure of gels under study was investigated by transmission and scanning electron microscopy. The material can be described as a composite in which the sonogel is the matrix and the colloid particles the reinforcing phase. For low colloid content, the colloid forms discrete clusters, and the main structural characteristic of sonogels, i.e., a network of uniformly sized particles of approximately 3-4-nm radius, remains unmodified. However, for high colloid silica content, a multimode distribution appears, the structure is discontinuous, and only colloid aggregates larger than 100 nm are observed. For medium colloid content, aggregates of approximately 50-100 nm can be seen, but the sonogel structure extends throughout the whole material. By the processing method and election of a suitable precursor concentration, it is possible to design the composite for specific purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...