Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vector Borne Zoonotic Dis ; 23(2): 63-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577051

RESUMO

Background: High frequency of Helicobacter pylori infection and the unknown mode of transmission prompted us to investigate H. pylori-wild housefly relationship. H. pylori causes chronic gastritis, peptic ulcers, and stomach cancer. H. pylori persists in the gut of the experimentally infected houseflies. The existence of H. pylori strains isolated from wild houseflies, on the other hand, has never been documented. Materials and Methods: In this study, 902 wild houseflies from different sites were identified as Musca domestica, then 60 flies were screened by traditional microbiological techniques and H. pylori-specific 16S rRNA gene. The antibiotic resistance (ART) was investigated phenotypically. Wild housefly gut bacterial isolates were further evaluated genotypically to have 23S rRNA gene mutation related to clarithromycin resistance. To find efficient therapeutic alternatives, the potency of three plant extracts (garlic, ginger, and lemon) and the wasp, Vespa orientalis venom was evaluated against H. pylori. The cytotoxic effect of the crude wasp venom, the most potent extract, against Vero and Colon cancer (Caco2) cell lines was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: All isolates from houseflies were positive. The isolated bacteria have variable resistance to frequently used antibiotics in all isolates. Minimum inhibitory concentration values of 15.625 mg/mL for both ginger and lemon extracts, 7.8125 mg/mL for garlic extract, and 0.0313 mg/mL for wasp venom were recorded. Wasp venom has the most potent antibacterial activity compared with the four antibiotics that are currently used in therapies against H. pylori. Conclusion: We conclude that wild houseflies can play a role in disseminating H. pylori. The housefly gut may be a suitable environment for the horizontal transfer of ART genes among its associated microbiome and H. pylori. Wasp venom proved its potential activity as a new and effective anti-H. pylori drug for both therapeutic and preventative usage.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Moscas Domésticas , Animais , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , Moscas Domésticas/microbiologia , Helicobacter pylori/genética , Células CACO-2 , RNA Ribossômico 16S , Venenos de Vespas/farmacologia , Venenos de Vespas/uso terapêutico , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária
2.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364017

RESUMO

The current work discusses the production and characterization of new biodegradable nanoparticles for biomedical applications based on insect chitosan. Chitosan has numerous features due to the presence of primary amine groups in repeating units, such as antibacterial and anticancer activities. When polyanion tripolyphosphate is added to chitosan, it creates nanoparticles with higher antibacterial activity than the original chitosan. In this study, the ionic gelation technique was used to make wasp chitosan nanoparticles (WCSNPs) in which TEM and FTIR were used to investigate the physicochemical properties of the nanoparticles. In addition, the antibacterial activities of chitosan nanoparticles against extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa were evaluated. The extracted wasp chitosan exhibited high solubility in acetic acid and met all standard criteria of all characterization testes for nanoparticles; the zeta potential indicated stable WCSNPs capable of binding to cellular membrane and increasing the cellular uptake. The produced WCSNPs showed growth inhibition activity against all tested strains, and the bacterial count was lower than the initial count. The inhibition percent of WCSNPs showed that the lowest concentration of WCSNPs was found to be effective against tested strains. WCSNPs' antibacterial activity implies that they could be used as novel, highly effective antibacterial agents in a variety of biological applications requiring antibacterial characteristics.


Assuntos
Quitosana , Nanopartículas , Vespas , Animais , Quitosana/farmacologia , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Egito , Nanopartículas/química , Escherichia coli
3.
Saudi J Biol Sci ; 28(9): 5261-5267, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466104

RESUMO

The development of different approaches to use agricultural residues as a source of high value-added products, become a must, especially after the problems emerged due to their accumulation. This contribution demonstrates the potential of agricultural residues, Linuim usitatissium (flax seed) and Nigella sativa (black seed) peels, as raw materials for the production of bioactive products, botanical insecticides, against Cx. pipiens, with deep analysis to their chemical constituents by gas chromatography-mass spectrometry, the larvicidal efficacies of the three crude extracts (methylene chloride, petroleum ether and methanol 70%) from the two plant waste peels were evaluated for the first time against the late third instar larvae of Cx. pipiens. Results indicated different lethal doses in larvae depending on the efficacy of organic solvent used. For both compounds methanol 70% extracts produced the highest dry yield. The most efficient solvent is petroleum ether in case of both flax and Black seed peels. Petroleum ether extract exhibited the highest toxicity against Cx. pipiens with an LC50 of 69.6383 ppm. The same results for black seed indicated that petroleum ether was the most efficient against Cx. pipiens with an LC50 of 40.7748 ppm. The study revealed for the first time the type of phytochemical constituents presents in peels of flax and black seeds using GC-MS analysis which revealed twenty-eight constituents among extracts of flax and black seed peels ranging from to 58.8711% to 99.99% of the total extracts. GC-MS profiling showed that a five constituents, 9-2-Methyl-Z, Z-3, 13 octadecadienol (terpenoid), 9,17-Octadecadienal, (Z)-, Nonanoic acid, 9-oxo-, methyl ester, 9,12-Octadecadienoic acid Z,Z and Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- have insecticidal activity beside many other biological activities as recorded from a variety of botanical extracts. While the constituents like Hexadecanoic acid, methyl ester and cis-9-Hexadecenal, both of them are larvicidal, cis-Vaccenic acid and 9-Oxononanoic acid showing only an insecticidal activity beside Undecanoic acid the mosquito repellent. The other six constituents Linoelaidic acid, Oleic Acid, Z-2-Octadecen-1-ol, 1-Methoxy-3-hydroxymethylheptane, Cis-11,14-Eicosadieonic acid-methyl ester and Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- are constituents of other plant extracts which showed as a whole an insecticidal activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...