Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691875

RESUMO

Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.


Assuntos
Cromo , Silício , Triticum , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Silício/farmacologia , Cromo/toxicidade , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
2.
Heliyon ; 10(4): e26381, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404847

RESUMO

Biological control of undesirable weeds associated with crop cultivation is a sustainable approach that can reduce chemical herbicide dependence. The current study aimed to assess the bio-herbicidal potential of the donor species Ononis vaginalis Vahl. on germination efficiency as well as various growth and physiological parameters of the recipient species Rumex dentatus L., a major broad bean pest (Vicia faba L.). To assess the greatest inhibitory allelopathic effect on the recipient species in mixed (Rumex dentatus L. and Vicia faba L.) and pure cultures (each one separately), two experiments were conducted under laboratory conditions. A Petri dish experiment using O. vaginalis shoot aqueous extract (5%, 10%, 20%, and 40%) and a pot experiment using O. vaginalis shoot crude powder (1%, 2%, 5%, and 10%) were conducted to investigate its biological activity on some growth and physiological parameters of both crop and weed species. O. vaginalis underwent a general phytochemical screening that revealed a high production of allelochemicals, which are secondary metabolites and may have a function like that of natural herbicides. The result showed that the germination of V. faba seeds in both pure and mixed cultures was not significantly affected by low levels of O. vaginalis shoot aqueous extract treatments in pure and mixed cultures, in contrast, those recorded for R. dentatus gradually dropped as levels of O. vaginalis increased in both cultures. Results recorded a significant increase in total phenolics of V. faba shoots and roots under different treatments, except at the high concentrations of crude powder at the donor species level (5 and10%). A reduction in the total phenolic and flavonoid fractions was observed in R. dentatus roots under varying concentration treatments. Conversely, under high concentration treatments, flavonoids decreased in the roots of the mixed culture of R. dentatus but increased in the shoots. In conclusion, allelopathy can be used to suppress weeds in field crops. The study confirmed the use of O. vaginalis into current weed control techniques. O. vaginalis could be explored further for weed suppression in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...