Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(50): 31272-31283, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496861

RESUMO

In this work, the core-shell PANI@WO3 composite was obtained from the reaction of aniline monomer polymerization with WO3 particles; sodium persulfate was used as an oxidant. Various analytical techniques such as scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-prepared PANI@WO3 adsorbent, which well confirmed that the WO3 particles were coated by polyaniline polymer. The PANI@WO3 composite was tested as an adsorbent to remove reactive orange G (OG) for the first time. pH, adsorbent dose, contact time, initial dye concentration, and temperature were systematically investigated in order to study their effect on the adsorption process. The experimental findings showed that the PANI@WO3 composite has considerable potential to remove an aqueous OG dye. Langmuir and Freundlich's models were used to analyze the equilibrium isotherms of OG dye adsorption on the PANI@WO3 composite. As a result, the best correlation of the experimental data was provided by the Langmuir model, and the maximum capacity of adsorption was 226.50 mg g-1. From a thermodynamic point of view, the OG dye adsorption process occurred spontaneously and endothermically. Importantly, PANI@WO3 still exhibited an excellent adsorption capability after four regeneration cycles, indicating the potential reusability of the PANI@WO3 composite. These results indicate that the as prepared PANI@WO3 composite could be employed as an efficient adsorbent and was much better than the parent material adsorption of OG dye.

2.
Int J Phytoremediation ; 23(4): 336-346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32898432

RESUMO

Synthetic dye waste is one of the world's key ecological concerns. The algal biomass has emerged as a promising alternative adsorbent for wastewater treatment. The present study deals with the functionalization of brown algae (BA) by citric acid in order to improve its adsorption ability for textile dye removal in aqueous solutions. The morphological texture (SEM and BET) and surface chemistry (FTIR, EDS-mapping, and PZC) of the novel functionalized brown algae (designated as BA-CA) were analyzed. The performance of BA-CA for crystal violet (CV) dye removal from wastewater was investigated. The isotherm and kinetic adsorption modeling indicate the good fit of Langmuir isotherm and pseudo-second-order models. Optimum monolayer uptake capacity was 279.14 mg/g for BA-CA, which was about two times higher than that of unmodified BA. The thermodynamic parameters clearly indicated that CV removal process was physiosorption, exothermic, and spontaneous in nature. The regeneration study showed excellent reusability of the BA-CA up to five cycles. Overall, the experimental findings lead us to conclude that the BA-CA can be used as an eco-friendly, cost-effective and easily regenerated adsorbent for the purification of textile effluents.


Assuntos
Phaeophyceae , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Ácido Cítrico , Violeta Genciana , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Águas Residuárias
3.
Environ Sci Pollut Res Int ; 27(13): 15245-15258, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32072410

RESUMO

A novel polyaniline@Almond shell (PANI@AS) biocomposite was synthesized via facile in situ chemical polymerization method. The as-synthesized adsorbent was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and potentiometric titration. A batch adsorption system was applied with the aim of investigating as-synthesized adsorbent ability to remove Cr(VI) ions and Orange G (OG) textile dye from aqueous solutions. Obtained results revealed that adsorption process was strongly depended upon the physicochemical parameters. The adsorption of Cr(VI) and OG dye onto PANI@AS was better described by the pseudo second-order-kinetic model and followed the Freundlich isotherm model. The maximum uptakes were 335.25 for Cr(VI) and 190.98 mg g-1 for OG dye. We further evaluated that PANI@AS biocomposite could be regenerated easily with NaOH solution and efficiently reused for Cr(VI) and OG dye removal from aqueous media. Thus, these results indicated the potential practical application of PANI@AS biocomposite for wastewater treatment.


Assuntos
Prunus dulcis , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Compostos de Anilina , Compostos Azo , Cromo/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA