Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639317

RESUMO

Enhanced sampling algorithms are indispensable when working with highly disconnected multimodal distributions. An important application of these is the conformational exploration of particular internal degrees of freedom of molecular systems. However, despite the existence of many commonly used enhanced sampling algorithms to explore these internal motions, they often rely on system-dependent parameters, which negatively impact efficiency and reproducibility. Here, we present fully adaptive simulated tempering (FAST), a variation of the irreversible simulated tempering algorithm, which continuously optimizes the number, parameters, and weights of intermediate distributions to achieve maximally fast traversal over a space defined by the change in a predefined thermodynamic control variable such as temperature or an alchemical smoothing parameter. This work builds on a number of previously published methods, such as sequential Monte Carlo, and introduces a novel parameter optimization procedure that can, in principle, be used in any expanded ensemble algorithms. This method is validated by being applied on a number of different molecular systems with high torsional kinetic barriers. We also consider two different soft-core potentials during the interpolation procedure and compare their performance. We conclude that FAST is a highly efficient algorithm, which improves simulation reproducibility and can be successfully used in a variety of settings with the same initial hyperparameters.

2.
J Am Chem Soc ; 146(13): 8877-8886, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503564

RESUMO

Hypoxia inducible factor (HIF) is a heterodimeric transcription factor composed of an oxygen-regulated α subunit and a constitutively expressed ß subunit that serves as the master regulator of the cellular response to low oxygen concentrations. The HIF transcription factor senses and responds to hypoxia by significantly altering transcription and reprogramming cells to enable adaptation to a hypoxic microenvironment. Given the central role played by HIF in the survival and growth of tumors in hypoxia, inhibition of this transcription factor serves as a potential therapeutic approach for treating a variety of cancers. Here, we report the identification, optimization, and characterization of a series of cyclic peptides that disrupt the function of HIF-1 and HIF-2 transcription factors by inhibiting the interaction of both HIF-1α and HIF-2α with HIF-1ß. These compounds are shown to bind to HIF-α and disrupt the protein-protein interaction between the α and ß subunits of the transcription factor, resulting in disruption of hypoxia-response signaling by our lead molecule in several cancer cell lines.


Assuntos
Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Hipóxia , Transdução de Sinais , Oxigênio/metabolismo , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/tratamento farmacológico
3.
Ultramicroscopy ; 256: 113882, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979542

RESUMO

Simulations of cryo-electron microscopy (cryo-EM) images of biological samples can be used to produce test datasets to support the development of instrumentation, methods, and software, as well as to assess data acquisition and analysis strategies. To be useful, these simulations need to be based on physically realistic models which include large volumes of amorphous ice. The gold standard model for EM image simulation is a physical atom-based ice model produced using molecular dynamics simulations. Although practical for small sample volumes; for simulation of cryo-EM data from large sample volumes, this can be too computationally expensive. We have evaluated a Gaussian Random Field (GRF) ice model which is shown to be more computationally efficient for large sample volumes. The simulated EM images are compared with the gold standard atom-based ice model approach and shown to be directly comparable. Comparison with experimentally acquired data shows the Gaussian random field ice model produces realistic simulations. The software required has been implemented in the Parakeet software package and the underlying atomic models are available online for use by the wider community.


Assuntos
Gelo , Software , Microscopia Crioeletrônica/métodos , Simulação de Dinâmica Molecular
4.
J Chem Inf Model ; 63(9): 2810-2827, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37071825

RESUMO

We present a comparative study that evaluates the performance of a machine learning potential (ANI-2x), a conventional force field (GAFF), and an optimally tuned GAFF-like force field in the modeling of a set of 10 γ-fluorohydrins that exhibit a complex interplay between intra- and intermolecular interactions in determining conformer stability. To benchmark the performance of each molecular model, we evaluated their energetic, geometric, and sampling accuracies relative to quantum-mechanical data. This benchmark involved conformational analysis both in the gas phase and chloroform solution. We also assessed the performance of the aforementioned molecular models in estimating nuclear spin-spin coupling constants by comparing their predictions to experimental data available in chloroform. The results and discussion presented in this study demonstrate that ANI-2x tends to predict stronger-than-expected hydrogen bonding and overstabilize global minima and shows problems related to inadequate description of dispersion interactions. Furthermore, while ANI-2x is a viable model for modeling in the gas phase, conventional force fields still play an important role, especially for condensed-phase simulations. Overall, this study highlights the strengths and weaknesses of each model, providing guidelines for the use and future development of force fields and machine learning potentials.


Assuntos
Clorofórmio , Teoria Quântica , Modelos Moleculares , Conformação Molecular , Ligação de Hidrogênio
5.
Nature ; 614(7948): 539-547, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725933

RESUMO

Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease.


Assuntos
Anticorpos Monoclonais , Afinidade de Anticorpos , Imunomodulação , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/efeitos dos fármacos , Antígenos CD40/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Nivolumabe/imunologia , Nivolumabe/farmacologia
6.
Biochem Soc Trans ; 51(1): 275-285, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36645000

RESUMO

Antigen processing is an immunological mechanism by which intracellular peptides are transported to the cell surface while bound to Major Histocompatibility Complex molecules, where they can be surveyed by circulating CD8+ or CD4+ T-cells, potentially triggering an immunological response. The antigen processing pathway is a complex multistage filter that refines a huge pool of potential peptide ligands derived from protein degradation into a smaller ensemble for surface presentation. Each stage presents unique challenges due to the number of ligands, the polymorphic nature of MHC and other protein constituents of the pathway and the nature of the interactions between them. Predicting the ensemble of displayed peptide antigens, as well as their immunogenicity, is critical for improving T cell vaccines against pathogens and cancer. Our predictive abilities have always been hindered by an incomplete empirical understanding of the antigen processing pathway. In this review, we highlight the role of computational and structural approaches in improving our understanding of antigen processing, including structural biology, computer simulation, and machine learning techniques, with a particular focus on the MHC-I pathway.


Assuntos
Apresentação de Antígeno , Peptídeos , Ligantes , Simulação por Computador , Peptídeos/metabolismo , Biologia
7.
J Chem Theory Comput ; 19(3): 1050-1062, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692215

RESUMO

Water molecules play a key role in many biomolecular systems, particularly when bound at protein-ligand interfaces. However, molecular simulation studies on such systems are hampered by the relatively long time scales over which water exchange between a protein and solvent takes place. Grand canonical Monte Carlo (GCMC) is a simulation technique that avoids this issue by attempting the insertion and deletion of water molecules within a given structure. The approach is constrained by low acceptance probabilities for insertions in congested systems, however. To address this issue, here, we combine GCMC with nonequilibium candidate Monte Carlo (NCMC) to yield a method that we refer to as grand canonical nonequilibrium candidate Monte Carlo (GCNCMC), in which the water insertions and deletions are carried out in a gradual, nonequilibrium fashion. We validate this new approach by comparing GCNCMC and GCMC simulations of bulk water and three protein binding sites. We find that not only is the efficiency of the water sampling improved by GCNCMC but that it also results in increased sampling of ligand conformations in a protein binding site, revealing new water-mediated ligand-binding geometries that are not observed using alternative enhanced sampling techniques.

8.
J Chem Inf Model ; 63(1): 387-396, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469670

RESUMO

Water molecules at protein-ligand interfaces are often of significant pharmaceutical interest, owing in part to the entropy which can be released upon the displacement of an ordered water by a therapeutic compound. Protein structures may not, however, completely resolve all critical bound water molecules, or there may be no experimental data available. As such, predicting the location of water molecules in the absence of a crystal structure is important in the context of rational drug design. Grand canonical Monte Carlo (GCMC) is a computational technique that is gaining popularity for the simulation of buried water sites. In this work, we assess the ability of GCMC to accurately predict water binding locations, using a dataset that we have curated, containing 108 unique structures of complexes between proteins and Food and Drug Administration (FDA)-approved small-molecule drugs. We show that GCMC correctly predicts 81.4% of nonbulk crystallographic water sites to within 1.4 Å. However, our analysis demonstrates that the reported performance of water prediction methods is highly sensitive to the way in which the performance is measured. We also find that crystallographic water sites with more protein/ligand hydrogen bonds and stronger electron density are more reliably predicted by GCMC. An analysis of water networks revealed that more than half of the structures contain at least one ligand-contacting water network. In these cases, displacement of a water site by a ligand modification might yield unexpected results if the larger network is destabilized. Cooperative effects between waters should therefore be explicitly considered in structure-based drug design.


Assuntos
Proteínas , Água , Água/química , Ligantes , Proteínas/química , Simulação por Computador , Preparações Farmacêuticas , Sítios de Ligação , Ligação Proteica
9.
Commun Biol ; 5(1): 1317, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456824

RESUMO

Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Several cytokines are known to increase virulence of bacterial pathogens, leading us to investigate whether Interferon-γ (IFN-γ), a central regulator of the immune defense against Mtb, has a direct effect on the bacteria. We found that recombinant and T-cell derived IFN-γ rapidly induced a dose-dependent increase in the oxygen consumption rate (OCR) of Mtb, consistent with increased bacterial respiration. This was not observed in attenuated Bacillus Calmette-Guérin (BCG), and did not occur for other cytokines tested, including TNF-α. IFN-γ binds to the cell surface of intact Mtb, but not BCG. Mass spectrometry identified mycobacterial membrane protein large 10 (MmpL10) as the transmembrane binding partner of IFN-γ, supported by molecular modelling studies. IFN-γ binding and the OCR response was absent in Mtb Δmmpl10 strain and restored by complementation with wildtype mmpl10. RNA-sequencing and RT-PCR of Mtb exposed to IFN-γ revealed a distinct transcriptional profile, including genes involved in virulence. In a 3D granuloma model, IFN-γ promoted Mtb growth, which was lost in the Mtb Δmmpl10 strain and restored by complementation, supporting the involvement of MmpL10 in the response to IFN-γ. Finally, IFN-γ addition resulted in sterilization of Mtb cultures treated with isoniazid, indicating clearance of phenotypically resistant bacteria that persist in the presence of drug alone. Together our data are the first description of a mechanism allowing Mtb to respond to host immune activation that may be important in the immunopathogenesis of TB and have use in novel eradication strategies.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Interferon gama , Proteínas de Membrana/genética , Citocinas
10.
J Comput Aided Mol Des ; 36(10): 767-779, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198874

RESUMO

Water plays an important role in mediating protein-ligand interactions. Water rearrangement upon a ligand binding or modification can be very slow and beyond typical timescales used in molecular dynamics (MD) simulations. Thus, inadequate sampling of slow water motions in MD simulations often impairs the accuracy of the accuracy of ligand binding free energy calculations. Previous studies suggest grand canonical Monte Carlo (GCMC) outperforms normal MD simulations for water sampling, thus GCMC has been applied to help improve the accuracy of ligand binding free energy calculations. However, in prior work we observed protein and/or ligand motions impaired how well GCMC performs at water rehydration, suggesting more work is needed to improve this method to handle water sampling. In this work, we applied GCMC in 21 protein-ligand systems to assess the performance of GCMC for rehydrating buried water sites. While our results show that GCMC can rapidly rehydrate all selected water sites for most systems, it fails in five systems. In most failed systems, we observe protein/ligand motions, which occur in the absence of water, combine to close water sites and block instantaneous GCMC water insertion moves. For these five failed systems, we both extended our GCMC simulations and tested a new technique named grand canonical nonequilibrium candidate Monte Carlo (GCNCMC). GCNCMC combines GCMC with the nonequilibrium candidate Monte Carlo (NCMC) sampling technique to improve the probability of a successful water insertion/deletion. Our results show that GCNCMC and extended GCMC can rehydrate all target water sites for three of the five problematic systems and GCNCMC is more efficient than GCMC in two out of the three systems. In one system, only GCNCMC can rehydrate all target water sites, while GCMC fails. Both GCNCMC and GCMC fail in one system. This work suggests this new GCNCMC method is promising for water rehydration especially when protein/ligand motions may block water insertion/removal.


Assuntos
Simulação de Dinâmica Molecular , Água , Água/química , Ligantes , Método de Monte Carlo , Proteínas , Hidratação
11.
Front Immunol ; 13: 969176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860259

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.884110.].

12.
Sci Immunol ; 7(73): eabm3723, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857577

RESUMO

Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.


Assuntos
Dissulfetos , Imunoglobulina G , Anticorpos Monoclonais , Dissulfetos/química , Epitopos , Humanos , Conformação Proteica
13.
Front Immunol ; 13: 884110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707541

RESUMO

We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.


Assuntos
Anticorpos , Simulação de Dinâmica Molecular , Anticorpos/química , Afinidade de Anticorpos , Antígenos , Água
14.
ACS Phys Chem Au ; 2(3): 247-259, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35637786

RESUMO

Water molecules play important roles in all biochemical processes. Therefore, it is of key importance to obtain information of the structure, dynamics, and thermodynamics of water molecules around proteins. Numerous computational methods have been suggested with this aim. In this study, we compare the performance of conventional and grand-canonical Monte Carlo (GCMC) molecular dynamics (MD) simulations to sample the water structure, as well GCMC and grid-based inhomogeneous solvation theory (GIST) to describe the energetics of the water network. They are evaluated on two proteins: the buried ligand-binding site of a ferritin dimer and the solvent-exposed binding site of galectin-3. We show that GCMC/MD simulations significantly speed up the sampling and equilibration of water molecules in the buried binding site, thereby making the results more similar for simulations started from different states. Both GCMC/MD and conventional MD reproduce crystal-water molecules reasonably for the buried binding site. GIST analyses are normally based on restrained MD simulations. This improves the precision of the calculated energies, but the restraints also significantly affect both absolute and relative energies. Solvation free energies for individual water molecules calculated with and without restraints show a good correlation, but with large quantitative differences. Finally, we note that the solvation free energies calculated with GIST are ∼5 times larger than those estimated by GCMC owing to differences in the reference state.

15.
J Chem Theory Comput ; 18(6): 3894-3910, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35588256

RESUMO

The sampling problem is one of the most widely studied topics in computational chemistry. While various methods exist for sampling along a set of reaction coordinates, many require system-dependent hyperparameters to achieve maximum efficiency. In this work, we present an alchemical variation of adaptive sequential Monte Carlo (SMC), an irreversible importance resampling method that is part of a well-studied class of methods that have been used in various applications but have been underexplored in computational biophysics. Afterward, we apply alchemical SMC on a variety of test cases, including torsional rotations of solvated ligands (butene and a terphenyl derivative), translational and rotational movements of protein-bound ligands, and protein side chain rotation coupled to the ligand degrees of freedom (T4-lysozyme, protein tyrosine phosphatase 1B, and transforming growth factor ß). We find that alchemical SMC is an efficient way to explore targeted degrees of freedom and can be applied to a variety of systems using the same hyperparameters to achieve a similar performance. Alchemical SMC is a promising tool for preparatory exploration of systems where long-timescale sampling of the entire system can be traded off against short-timescale sampling of a particular set of degrees of freedom over a population of conformers.


Assuntos
Proteínas , Ligantes , Método de Monte Carlo
16.
Chem Sci ; 13(7): 1957-1971, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308859

RESUMO

Understanding the conformational ensembles of intrinsically disordered proteins and peptides (IDPs) in their various biological environments is essential for understanding their mechanisms and functional roles in the proteome, leading to a greater knowledge of, and potential treatments for, a broad range of diseases. To determine whether molecular simulation is able to generate accurate conformational ensembles of IDPs, we explore the structural landscape of the PLP peptide (an intrinsically disordered region of the proteolipid membrane protein) in aqueous and membrane-mimicking solvents, using replica exchange with solute scaling (REST2), and examine the ability of four force fields (ff14SB, ff14IDPSFF, CHARMM36 and CHARMM36m) to reproduce literature circular dichroism (CD) data. Results from variable temperature (VT) 1H and Rotating frame Overhauser Effect SpectroscopY (ROESY) nuclear magnetic resonance (NMR) experiments are also presented and are consistent with the structural observations obtained from the simulations and CD. We also apply the optimum simulation protocol to TP2 and ONEG (a cell-penetrating peptide (CPP) and a negative control peptide, respectively) to gain insight into the structural differences that may account for the observed difference in their membrane-penetrating abilities. Of the tested force fields, we find that CHARMM36 and CHARMM36m are best suited to the study of IDPs, and accurately predict a disordered to helical conformational transition of the PLP peptide accompanying the change from aqueous to membrane-mimicking solvents. We also identify an α-helical structure of TP2 in the membrane-mimicking solvents and provide a discussion of the mechanistic implications of this observation with reference to the previous literature on the peptide. From these results, we recommend the use of CHARMM36m with the REST2 protocol for the study of environment-specific IDP conformations. We believe that the simulation protocol will allow the study of a broad range of IDPs that undergo conformational transitions in different biological environments.

17.
J Chem Theory Comput ; 18(3): 1359-1381, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35148093

RESUMO

Water often plays a key role in protein structure, molecular recognition, and mediating protein-ligand interactions. Thus, free energy calculations must adequately sample water motions, which often proves challenging in typical MD simulation time scales. Thus, the accuracy of methods relying on MD simulations ends up limited by slow water sampling. Particularly, as a ligand is removed or modified, bulk water may not have time to fill or rearrange in the binding site. In this work, we focus on several molecular dynamics (MD) simulation-based methods attempting to help rehydrate buried water sites: BLUES, using nonequilibrium candidate Monte Carlo (NCMC); grand, using grand canonical Monte Carlo (GCMC); and normal MD. We assess the accuracy and efficiency of these methods in rehydrating target water sites. We selected a range of systems with varying numbers of waters in the binding site, as well as those where water occupancy is coupled to the identity or binding mode of the ligand. We analyzed the rehydration of buried water sites in binding pockets using both clustering of trajectories and direct analysis of electron density maps. Our results suggest both BLUES and grand enhance water sampling relative to normal MD and grand is more robust than BLUES, but also that water sampling remains a major challenge for all of the methods tested. The lessons we learned for these methods and systems are discussed.


Assuntos
Simulação de Dinâmica Molecular , Água , Sítios de Ligação , Hidratação , Ligantes , Método de Monte Carlo , Ligação Proteica , Termodinâmica , Água/química
18.
Phys Chem Chem Phys ; 23(43): 24842-24851, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723311

RESUMO

Atomistic models provide a detailed representation of molecular systems, but are sometimes inadequate for simulations of large systems over long timescales. Coarse-grained models enable accelerated simulations by reducing the number of degrees of freedom, at the cost of reduced accuracy. New optimisation processes to parameterise these models could improve their quality and range of applicability. We present an automated approach for the optimisation of coarse-grained force fields, by reproducing free energy data derived from atomistic molecular simulations. To illustrate the approach, we implemented hydration free energy gradients as a new target for force field optimisation in ForceBalance and applied it successfully to optimise the un-charged side-chains and the protein backbone in the SIRAH protein coarse-grain force field. The optimised parameters closely reproduced hydration free energies of atomistic models and gave improved agreement with experiment.


Assuntos
Automação , Simulação de Dinâmica Molecular , Proteínas/química , Termodinâmica
19.
J Chem Theory Comput ; 17(11): 7021-7042, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34644088

RESUMO

Conformational analysis is of paramount importance in drug design: it is crucial to determine pharmacological properties, understand molecular recognition processes, and characterize the conformations of ligands when unbound. Molecular Mechanics (MM) simulation methods, such as Monte Carlo (MC) and molecular dynamics (MD), are usually employed to generate ensembles of structures due to their ability to extensively sample the conformational space of molecules. The accuracy of these MM-based schemes strongly depends on the functional form of the force field (FF) and its parametrization, components that often hinder their performance. High-level methods, such as ab initio MD, provide reliable structural information but are still too computationally expensive to allow for extensive sampling. Therefore, to overcome these limitations, we present a multilevel MC method that is capable of generating quantum configurational ensembles while keeping the computational cost at a minimum. We show that FF reparametrization is an efficient route to generate FFs that reproduce QM results more closely, which, in turn, can be used as low-cost models to achieve the gold standard QM accuracy. We demonstrate that the MC acceptance rate is strongly correlated with various phase space overlap measurements and that it constitutes a robust metric to evaluate the similarity between the MM and QM levels of theory. As a more advanced application, we present a self-parametrizing version of the algorithm, which combines sampling and FF parametrization in one scheme, and apply the methodology to generate the QM/MM distribution of a ligand in aqueous solution.

20.
Biochemistry ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342217

RESUMO

The influenza A M2 wild-type (WT) proton channel is the target of the anti-influenza drug rimantadine. Rimantadine has two enantiomers, though most investigations into drug binding and inhibition have used a racemic mixture. Solid-state NMR experiments using the full length-M2 WT have shown significant spectral differences that were interpreted to indicate tighter binding for (R)- vs (S)-rimantadine. However, it was unclear if this correlates with a functional difference in drug binding and inhibition. Using X-ray crystallography, we have determined that both (R)- and (S)-rimantadine bind to the M2 WT pore with slight differences in the hydration of each enantiomer. However, this does not result in a difference in potency or binding kinetics, as shown by similar values for kon, koff, and Kd in electrophysiological assays and for EC50 values in cellular assays. We concluded that the slight differences in hydration for the (R)- and (S)-rimantadine enantiomers are not relevant to drug binding or channel inhibition. To further explore the effect of the hydration of the M2 pore on binding affinity, the water structure was evaluated by grand canonical ensemble molecular dynamics simulations as a function of the chemical potential of the water. Initially, the two layers of ordered water molecules between the bound drug and the channel's gating His37 residues mask the drug's chirality. As the chemical potential becomes more unfavorable, the drug translocates down to the lower water layer, and the interaction becomes more sensitive to chirality. These studies suggest the feasibility of displacing the upper water layer and specifically recognizing the lower water layers in novel drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...