Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 228: 113394, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301018

RESUMO

Ocular inflammation is one of the most prevalent diseases in ophthalmology and it is currently treated using eye drops of nonsteroidal antiinflammatory drugs such as dexibuprofen (DXI). However, their bioavailability is low and therefore, PLGA nanoparticles constitute a suitable approach to be administered as eyedrops. Therefore, DXI has been encapsulated into PLGA nanoparticles (DXI-NPs). Although the eye, and specifically the cornea, suffers from age-related changes in its composition, current medications are not focused on these variations. Therefore, to elucidate the interaction mechanism of DXI-NPs with the cornea in relation with age, two different corneal membrane models have been developed (corresponding to adult and elder population) using lipid monolayers, large and giant unilamellar vesicles. Interactions of both DXI and DXI-NPs were studied with these models by means of Langmuir balance technique, dipole potential, anisotropy and confocal microscopy. In addition, fluorescently labelled nanoparticles were administered to mice in order to corroborate these data obtained in vitro. It was observed that DXI-NPs interact with lipid membranes through an adhesion process, mainly in the rigid regions and afterwards DXI-NPs are internalized by a wrapping process. Furthermore, differences on the dipole potential caused by DXI-NPs in each corneal membrane have been obtained due to the increase of membrane rigidity on the ECMM. Additionally, it can be confirmed that DXI-NPs adhere to Lo phase and also inside the lipid membrane. Finally, in vitro and in vivo results corroborate that DXI-NPs are adhered to the more ordered phase. Finally, differences between interactions of DXI-NPs with the elder and adult corneal tissue were observed.


Assuntos
Córnea , Nanopartículas , Camundongos , Animais , Ibuprofeno/farmacologia , Lipídeos
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175765

RESUMO

Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis (ALS), with anti-proliferative effects potentially beneficial for diseases with excessive cell turnover. However, RLZ possesses low water solubility and high light-sensibility. We present here optimized NLCs loaded with RLZ (RLZ-NLCs) as a potential topical treatment. RLZ-NLCs were prepared by the hot-pressure homogenization method using active essential oils as liquid lipids, and optimized using the design of experiments approach. RLZ-NLCs were developed obtaining optimal properties for dermal application (mean size below 200 nm, negative surface charge and high RLZ entrapment efficacy). In vitro release study demonstrates that RLZ-NLCs allow the successful delivery of RLZ in a sustained manner. Moreover, RLZ-NLCs are not angiogenic and are able to inhibit keratinocyte cell proliferation. Hence, a NLCs delivery system loading RLZ in combination with natural essential oils constitutes a promising strategy against keratinocyte hyperproliferative conditions.


Assuntos
Nanopartículas , Nanoestruturas , Dermatopatias , Humanos , Riluzol/farmacologia , Portadores de Fármacos , Dermatopatias/metabolismo , Liberação Controlada de Fármacos , Lipídeos/farmacologia , Tamanho da Partícula , Pele/metabolismo
3.
Epilepsia Open ; 7 Suppl 1: S121-S132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34862851

RESUMO

Epilepsy is the second most prevalent neurological disease worldwide. It is mainly characterized by an electrical abnormal activity in different brain regions. The massive entrance of Ca2+ into neurons is the main neurotoxic process that lead to cell death and finally to neurodegeneration. Although there are a huge number of antiseizure medications, there are many patients who do not respond to the treatments and present refractory epilepsy. In this context, nanomedicine constitutes a promising alternative to enhance the central nervous system bioavailability of antiseizure medications. The encapsulation of different chemical compounds at once in a variety of controlled drug delivery systems gives rise to an enhanced drug effectiveness mainly due to their targeting and penetration into the deepest brain region and the protection of the drug chemical structure. Thus, in this review we will explore the recent advances in the development of drugs associated with polymeric and lipid-based nanocarriers as novel tools for the management of epilepsy disorders.


Assuntos
Epilepsia , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Epilepsia/tratamento farmacológico , Humanos , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapêutico
4.
Int J Pharm ; 612: 121379, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34915146

RESUMO

Riluzole-loaded PLGA nanoparticles (RLZ-NPs) were developed to improve the biopharmaceutical profile of RLZ after ocular administration. Moreover, RLZ-NPs were dispersed in an in situ gelling system (RLZ-NPs-Gel) for topical administration as a potential neuroprotective strategy against glaucoma. Formulations were optimized using the design of experiments approach. Characterization of the physicochemical and rheological properties, as well as interaction studies were carried out. To ensure RLZ-NPs-Gel ocular safety, the irritant potential was also evaluated in vitro and in vivo. Moreover, in vivo ocular biodistribution was also undertaken. Optimized RLZ-NPs showed an average size below 200 nm, an encapsulation efficiency greater than 90% and a negative surface charge. Interaction studies of RLZ-NPs showed that RLZ was dispersed in the polymeric matrix. RLZ-NPs-Gel possess a pseudoplastic behavior and a medium-low post-gelling viscosity to avoid discomfort after ocular application. Simultaneously, RLZ-NPs-Gel were able to increase RLZ-NPs contact with the ocular surface. Both formulations demonstrated the ability to be distributed in the posterior eye segment after 24 h of their application obtaining a more delayed distribution for RLZ-NPs-Gel. Therefore, a novel in situ gelling system able to disperse RLZ-NPs has been successfully developed as innovative neuroprotective strategy for potential topical treatment of glaucoma.


Assuntos
Nanopartículas , Segmento Posterior do Olho , Administração Oftálmica , Riluzol , Distribuição Tecidual
5.
Pharmaceutics ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678731

RESUMO

Cancer is identified as one of the main causes of death worldwide, and an effective treatment that can reduce/eliminate serious adverse effects is still an unmet medical need. Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has demonstrated promising antitumoral properties. However, the prolonged use of this NSAID poses several adverse effects. These can be overcome by the use of suitable delivery systems that are able to provide a controlled delivery of the payload. In this study, Diclofenac was incorporated into biodegradable polymeric nanoparticles based on PLGA and the formulation was optimized using a factorial design approach. A monodisperse nanoparticle population was obtained with a mean size of ca. 150 nm and negative surface charge. The release profile of diclofenac from the optimal formulation followed a prolonged release kinetics. Diclofenac nanoparticles demonstrated antitumoral and antiangiogenic properties without causing cytotoxicity to non-tumoral cells, and can be pointed out as a safe, promising and innovative nanoparticle-based formulation with potential antitumoral effects.

6.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290252

RESUMO

Ocular inflammation is one of the most prevalent diseases in ophthalmology, which can affect various parts of the eye or the surrounding tissues. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, are commonly used to treat ocular inflammation in the form of eye-drops. However, their bioavailability in ocular tissues is very low (less than 5%). Therefore, drug delivery systems such as biodegradable polymeric PLGA nanoparticles constitute a suitable alternative to topical eye administration, as they can improve ocular bioavailability and simultaneously reduce drug induced side effects. Moreover, their prolonged drug release can enhance patient treatment adherence as they require fewer administrations. Therefore, several formulations of PLGA based nanoparticles encapsulating dexibuprofen (active enantiomer of Ibuprofen) were prepared using the solvent displacement method employing different surfactants. The formulations have been characterized and their interactions with a customized lipid corneal membrane model were studied. Ex vivo permeation through ocular tissues and in vivo anti-inflammatory efficacy have also been studied.

7.
Nanomaterials (Basel) ; 10(2)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050443

RESUMO

Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...