Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(9): 6636-6652, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790196

RESUMO

Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of ice layers. In a recent work [Boström et al., Astron. Astrophys., A54, 650, 2021], it was found that a surface region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously stabilizing ice layers. In this paper, it is demonstrated that the Casimir-Lifshitz free energy in multi-layer systems could induce thinner, but more stable, ice layers in cavities than those found for gas hydrates in a large reservoir of cold water. The thickness and stability of such ice layers in a pore filled with cold water could influence the leakage of gas molecules. Additional contributions, e.g. from salt-induced stresses, can also be of importance, and are briefly discussed.

2.
J Phys Chem Lett ; 13(20): 4513-4519, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35576163

RESUMO

An object that is immersed in a fluid and approaching a substrate may find a potential energy minimum at a certain distance due to the balance between attractive and repulsive Casimir-Lifshitz forces, a phenomenon referred to as quantum trapping. This equilibrium depends on the relative values of the dielectric functions of the materials involved. Herein, we study quantum trapping effects in planar nanocomposite materials and demonstrate that they are strongly dependent on the characteristics of the spatial inhomogeneity. As a model case, we consider spherical particles embedded in an otherwise homogeneous material. We propose an effective medium approximation that accounts for the effect of inclusions and find that an unprecedented and counterintuitive intense repulsive Casimir-Lifshitz force arises as a result of the strong optical scattering and absorption size-dependent resonances caused by their presence. Our results imply that the proper analysis of quantum trapping effects requires comprehensive knowledge and a detailed description of the potential inhomogeneity (caused by imperfections, pores, inclusions, and density variations) present in the materials involved.

3.
J Phys Chem Lett ; 12(43): 10706-10712, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34709847

RESUMO

The recent development of organic polaritonic solar cells, in which sunlight absorbers and photon modes of a resonator are hybridized as a result of their strong coupling, has revealed the potential this interaction offers to control and enhance the performance of these devices. In this approach, the photovoltaic cell is built in such a way that it also behaves as an optical cavity supporting spectrally well-defined resonances, which match the broad absorption bands of the dyes employed. Herein we focus on the experimental and theoretical analysis of the specific spectral and angular optical absorption characteristics of a broadband light harvester, namely a subphthalocyanine, when operating in the ultrastrong coupling regime. We discuss the implications of having a broad distribution of oscillator strengths and demonstrate that rational design of the layered structure is needed to optimize both the spectral and the angular response of the sunlight harvester dye.

4.
J Phys Chem Lett ; 10(19): 5856-5860, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31424947

RESUMO

We theoretically investigate the building of optical resonators based on the levitation properties of thin films subjected to strong repulsive Casimir-Lifshitz forces when immersed in an adequate medium and confronted with a planar substrate. We propose a design in which cavities supporting high Q-factor optical modes at visible frequencies can be achieved by means of combining commonly found materials, such as silicon oxide, polystyrene or gold, with glycerol as a mediating medium. We use the balance between flotation and repulsive Casimir-Lifshitz forces in the system to accurately tune the optical cavity thickness and hence its modes. The effects of other forces, such as electrostatic, that may come into play are also considered. Our results constitute a proof of concept that may open the route to the design of photonic architectures in environments in which dispersion forces play a substantial role and could be of particular relevance for devising novel microfluidic optical resonators.

5.
J Phys Chem C Nanomater Interfaces ; 119(10): 5663-5670, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-26405466

RESUMO

We report on the theoretical analysis of equilibrium distances in real plane-parallel systems under the influence of Casimir and gravity forces at thermal equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon substrate at certain stable or unstable positions depending on the material and the slab thickness. Hybrid systems containing silica and polystyrene, materials which display Casimir forces and equilibrium distances of opposite nature when considered individually, are analyzed in either bilayer arrangements or as composite systems made of a homogeneous matrix with small inclusions inside. For each configuration, equilibrium distances and their stability can be adjusted by fine-tuning of the volume occupied by each material. We find the specific conditions under which nanolevitation of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be used to control suspension or stiction phenomena at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...