Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 21(1-2): 190-199, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31532570

RESUMO

As a result of the exponential increase in genomic data, discovery of novel ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has progressed rapidly in the past decade. The lanthipeptides are a major subset of RiPPs. Through genome mining we identified a novel lanthipeptide biosynthetic gene cluster (lah) from Lachnospiraceae bacterium C6A11, an anaerobic bacterium that is a member of the human microbiota and which is implicated in the development of host disease states such as type 2 diabetes and resistance to Clostridium difficile colonization. The lah cluster encodes at least seven putative precursor peptides and multiple post-translational modification (PTM) enzymes. Two unusual class II lanthipeptide synthetases LahM1/M2 and a substrate-tolerant S-adenosyl-l-methionine (SAM)-dependent methyltransferase LahSB are biochemically characterized in this study. We also present the crystal structure of LahSB in complex with product S-adenosylhomocysteine. This study sets the stage for further exploration of the final products of the lah pathway as well as their potential physiological functions in human/animal gut microbiota.


Assuntos
Produtos Biológicos/metabolismo , Clostridiales/metabolismo , Hidroliases/metabolismo , Metiltransferases/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Clostridiales/genética , Processamento de Proteína Pós-Traducional
2.
Chem Sci ; 10(8): 2391-2395, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881667

RESUMO

Microcin C7 (McC) is a peptide antibiotic modified by a linkage of the terminal isoAsn amide to AMP via a phosphoramidate bond. Post-translational modification on this ribosomally produced heptapeptide precursor is carried out by MccB, which consumes two equivalents of ATP to generate the N-P linkage. We demonstrate that MccB only efficiently processes the precursor heptapeptide that retains the N-formylated initiator Met (fMet). Binding studies and kinetic measurements evidence the role of the N-formyl moiety. Structural data show that the N-formyl peptide binding results in an ordering of residues in the MccB "crossover loop", which dictates specificity in homologous ubiquitin activating enzymes. The N-formyl peptide exhibits substrate inhibition, and cannot be displaced from MccB by the desformyl counterpart. Such substrate inhibition may be a strategy to avert unwanted McC buildup and avert toxicity in the cytoplasm of producing organisms.

3.
J Am Chem Soc ; 140(26): 8124-8127, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29924593

RESUMO

Mutation at a single amino acid alters the isoprene donor specificity of prenyltransferases involved in the modification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Though most characterized RiPP prenyltransferases carry out the regiospecific transfer of C5 dimethylallyl donor to the side chain atoms on macrocyclic acceptor substrates, the elucidation of the cyanobactin natural product piricyclamide 70005E1 identifies an O-geranyl modification on Tyr, a reaction with little prior biochemical precedence. Reconstitution and kinetic studies of the presumptive geranyltransferase PirF shows that the enzyme utilizes a C10 donor, with no C5 transferase activity. The crystal structure of PirF reveals a single amino acid difference in the vicinity of the isoprene-binding pocket, relative to the C5 utilizing enzymes. Remarkably, only a single amino acid mutation is necessary to completely switch the donor specificity from a C5 to a C10 prenyltransferase, and vice versa. Lastly, we demonstrate that these enzymes may be used for the chemospecific attachment of C5 or C10 lipid groups on lanthipeptides, an unrelated class of RiPP natural products. These studies represent a rare example where prenyl donor specificity can be discretely altered, which expands the arsenal of synthetic biology tools for tuning biological activities of peptide natural products.


Assuntos
Aminoácidos/metabolismo , Butadienos/metabolismo , Dimetilaliltranstransferase/metabolismo , Hemiterpenos/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Aminoácidos/química , Butadienos/química , Dimetilaliltranstransferase/química , Hemiterpenos/química , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , Ribossomos/química
4.
Proc Natl Acad Sci U S A ; 114(25): 6551-6556, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584123

RESUMO

Enzymes that can catalyze the macrocyclization of linear peptide substrates have long been sought for the production of libraries of structurally diverse scaffolds via combinatorial gene assembly as well as to afford rapid in vivo screening methods. Orbitides are plant ribosomally synthesized and posttranslationally modified peptides (RiPPs) of various sizes and topologies, several of which are shown to be biologically active. The diversity in size and sequence of orbitides suggests that the corresponding macrocyclases may be ideal catalysts for production of cyclic peptides. Here we present the biochemical characterization and crystal structures of the plant enzyme PCY1 involved in orbitide macrocyclization. These studies demonstrate how the PCY1 S9A protease fold has been adapted for transamidation, rather than hydrolysis, of acyl-enzyme intermediates to yield cyclic products. Notably, PCY1 uses an unusual strategy in which the cleaved C-terminal follower peptide from the substrate stabilizes the enzyme in a productive conformation to facilitate macrocyclization of the N-terminal fragment. The broad substrate tolerance of PCY1 can be exploited as a biotechnological tool to generate structurally diverse arrays of macrocycles, including those with nonproteinogenic elements.


Assuntos
Peptídeos Cíclicos/genética , Proteínas de Plantas/genética , Plantas/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Sequência de Aminoácidos , Processamento de Proteína Pós-Traducional/genética
5.
Nat Chem Biol ; 13(6): 668-674, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28414711

RESUMO

Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.


Assuntos
Monofosfato de Adenosina/metabolismo , Coenzima A Ligases/química , Modelos Moleculares , Monofosfato de Adenosina/química , Domínio Catalítico , Coenzima A Ligases/metabolismo , Cristalização , Ligantes , Estrutura Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...