Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microb Ecol ; 84(2): 539-555, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34498120

RESUMO

Soil bacterial and fungal communities are suitable soil ecosystem health indicators due to their sensitivity to management practices and their role in soil ecosystem processes. Here, information on composition and functions of bacterial and fungal communities were evaluated at two phenological stages of sugarcane (six and twelve months, equivalent to the most intensive vegetative stage and to final maturation, respectively) when organomineral fertilizer, combined with phosphate-solubilizing bacteria (PSB), was added into the soil. Organic compost enriched with apatite (C + A) or phosphorite (C + P) and compost without phosphate enrichment (C) were used in the presence or absence of PSB. In addition, we used a control fertilized with soluble triple superphosphate. The differences were more related to the sampling period than to the type of organomineral fertilizer, being observed higher available phosphorus at six months than at twelve months. Only in the C treatment we observed the presence of Bacillaceae and Planococcaceae, while Pseudomonadaceae were only prevalent in inoculated C + A. As for fungi, the genera Chaetomium and Achroiostachys were only present in inoculated C + P, while the genus Naganishia was most evident in inoculated C + A and in uninoculated C + P. Soliccocozyma represented 75% of the total fungal abundance in uninoculated C while in inoculated C, it represented 45%. The bacterial community was more related to the degradation of easily decomposable organic compounds, while the fungal community was more related to degradation of complex organic compounds. Although the microbial community showed a resilient trait, subtle changes were detected in microbial community composition and function, and this may be related to the increase in yield observed.


Assuntos
Microbiota , Saccharum , Bactérias , Fertilizantes/análise , Fosfatos , Solo , Microbiologia do Solo
3.
Syst Appl Microbiol ; 40(5): 308-313, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28645701

RESUMO

Sugarcane processing generates a large quantity of residues, such as filter cake and ashes, which are sometimes composted prior to their amendment in soil. However, important issues still have to be addressed on this subject, such as the description of bacterial succession that occurs throughout the composting process and the possibilities of using phosphate-solubilizing bacteria (PSB) during the process to improve phosphorus (P) availability in the compost end product. Consequently, this study evaluated the bacterial diversity and P dynamics during the composting process when inoculated with Pseudomonas aeruginosa PSBR12 and Bacillus sp. BACBR01. To characterize the bacterial community structure during composting, and to compare PSB-inoculated compost with non-inoculated compost, partial sequencing of the bacterial 16S rRNA gene and sequential P fractionation were used. The data indicated that members of the order Lactobacillales prevailed in the early stages of composting for up to 30 days, mostly due to initial changes in pH and the C/N ratio. This dominant bacterial group was then slowly replaced by Bacillales during a composting process of up to 60 days. In addition, inoculation of PSB reduced the levels of Ca-bound P by 21% and increased the labile organic P fraction. In PSB-inoculated compost, Ca-P compound solubilization occurred concomitantly with an increase of the genus Bacillus. The bacterial succession and the final community is described in compost from sugarcane residues and the possible use of these inoculants to improve P availability in the final compost is validated.


Assuntos
Bacillus/metabolismo , Compostagem/métodos , Resíduos Industriais/análise , Fósforo/metabolismo , Pseudomonas aeruginosa/metabolismo , Saccharum/metabolismo , Saccharum/microbiologia , Biodegradação Ambiental , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Saccharum/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA