Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2015: 874916, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682224

RESUMO

Comparability between a biosimilar and its reference product requires the evaluation of critical quality attributes that may impact on its pharmacological response. Herein we present a physicochemical characterization of a biosimilar trastuzumab focused on the attributes related to the pharmacokinetic response. Capillary isoelectrofocusing (cIEF) and cation exchange chromatography (CEX) were used to evaluate charge heterogeneity; glycosylation profiles were assessed through hydrophilic interaction liquid chromatography (HILIC); aggregates content was evaluated through size exclusion chromatography (SEC) while binding affinity to FcRn was evaluated using isothermal titration calorimetry (ITC). The biosimilar trastuzumab and its reference product exhibited a high degree of similarity for the evaluated attributes. In regard to the pharmacokinetic parameters, randomized, double blind, and two-arm parallel and prospective study was employed after the administration of a single intravenous dose in healthy volunteers. No significant differences were found between the pharmacokinetic profiles of both products. Our results confirm that similarity of the critical quality attributes between a biosimilar product, obtained from a different manufacturing process, and the reference product resulted in comparable pharmacokinetic profiles, diminishing the uncertainty related to the biosimilar's safety and efficacy.


Assuntos
Medicamentos Biossimilares/farmacocinética , Trastuzumab/fisiologia , Adolescente , Adulto , Método Duplo-Cego , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
2.
Indian J Pharm Sci ; 76(4): 281-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25284925

RESUMO

Clinical response to clopidogrel varies widely due to under-dosing, drug interactions and intrinsic interindividual differences resulting from genetic polymorphisms. Cytochrome P450-2C19 is the principal enzyme involved in the activation of the prodrug and loss-of-function alleles have been described. Upon expiration of the pharmaceutical patent of clopidogrel, generic manufacturers have started to subject interchangeable formulations to bioequivalence studies. The purpose of the current investigation was to study the effect of selection of volunteers homozygous for the CYP2C19*1 haplotype on the bioavailability of clopidogrel. A regular 2×2 bioequivalence study between two formulations of clopidogrel was performed in volunteers selected and unselected for relevant CYP2C19 haplotypes for the Mexican population. It was found that selection of volunteers homozygous for the CYP2C19*1 haplotype, increased the stringency of bioequivalence statistics and resulted in bioinequivalence of a generic clopidogrel compound that otherwise proved equivalent when tested in an open unselected population. Augmentation of bioequivalence strictness is expected to result from pharmacogenetic selection of volunteers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...