Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0294425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381734

RESUMO

Generating transgenic hairy roots has been the preferred strategy for molecular studies in common bean (Phaseolus vulgaris L.), since generating stable knockout lines in this species is challenging. However, the number of plants producing hairy roots following the original protocol published in 2007 is usually low, which has impeded progress. Since its initial publication, the original protocol has been extensively modified, but these modifications have not been adequately or systematically reported, making it difficult to assess the reproducibility of the method. The protocol presented here is an update and expansion of the original method. Importantly, it includes new, critical steps for generating transgenic hairy roots and using them in molecular analyses based on reverse-genetics approaches. Using this protocol, the expression of two different genes, used as an example, was significantly increased or decreased in approximately 30% of the transformed plants. In addition, the promoter activity of a given gene was observed, and the infection process of rhizobia in transgenic hairy roots was monitored successfully. Thus, this improved protocol can be used to upregulate, downregulate, and perform promoter activity analysis of various genes in common bean transgenic hairy roots as well as to track rhizobia infection.


Assuntos
Phaseolus , Rhizobium , Phaseolus/genética , Reprodutibilidade dos Testes , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rhizobium/genética , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas/genética
2.
Mol Plant Microbe Interact ; 32(8): 939-948, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30893001

RESUMO

In the establishment of plant-rhizobial symbiosis, the plant hosts express nodulin proteins during root nodule organogenesis. A limited number of nodulins have been characterized, and these perform essential functions in root nodule development and metabolism. Most nodulins are expressed in the nodule and at lower levels in other plant tissues. Previously, we isolated Nodulin 22 (PvNod22) from a common bean (Phaseolus vulgaris L.) cDNA library derived from Rhizobium-infected roots. PvNod22 is a noncanonical, endoplasmic reticulum (ER)-localized, small heat shock protein that confers protection against oxidative stress when overexpressed in Escherichia coli. Virus-induced gene silencing of PvNod22 resulted in necrotic lesions in the aerial organs of P. vulgaris plants cultivated under optimal conditions, activation of the ER-unfolded protein response (UPR), and, finally, plant death. Here, we examined the expression of PvNod22 in common bean plants during the establishment of rhizobial endosymbiosis and its relationship with two cellular processes associated with plant immunity, the UPR and autophagy. In the RNA interference lines, numerous infection threads stopped their progression before reaching the cortex cell layer of the root, and nodules contained fewer nitrogen-fixing bacteroids. Collectively, our results suggest that PvNod22 has a nonredundant function during legume-rhizobia symbiosis associated with infection thread elongation, likely by sustaining protein homeostasis in the ER.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Membrana , Phaseolus , Proteínas de Plantas , Rhizobium , Simbiose , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fixação de Nitrogênio , Phaseolus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
3.
J Exp Bot ; 69(8): 2037-2048, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29394394

RESUMO

Root hair curling is an early and essential morphological change required for the success of the symbiotic interaction between legumes and rhizobia. At this stage rhizobia grow as an infection thread within root hairs and are internalized into the plant cells by endocytosis, where the PI3K enzyme plays important roles. Previous observations show that stress conditions affect early stages of the symbiotic interaction, from 2 to 30 min post-inoculation, which we term as very early host responses, and affect symbiosis establishment. Herein, we demonstrated the relevance of the very early host responses for the symbiotic interaction. PI3K and the NADPH oxidase complex are found to have key roles in the microsymbiont recognition response, modulating the apoplastic and intracellular/endosomal ROS induction in root hairs. Interestingly, compared with soybean mutant plants that do not perceive the symbiont, we demonstrated that the very early symbiont perception under sublethal saline stress conditions induced root hair death. Together, these results highlight not only the importance of the very early host-responses on later stages of the symbiont interaction, but also suggest that they act as a mechanism for local control of nodulation capacity, prior to the abortion of the infection thread, preventing the allocation of resources/energy for nodule formation under unfavorable environmental conditions.


Assuntos
Bradyrhizobium/fisiologia , Glycine max/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Simbiose , Interações Hospedeiro-Patógeno , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosfatidilinositol 3-Quinase/genética , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Glycine max/genética , Glycine max/microbiologia , Glycine max/fisiologia
4.
Front Plant Sci ; 8: 96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28203245

RESUMO

Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction.

5.
Front Plant Sci ; 7: 1589, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27847509

RESUMO

Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant.

6.
Plant Cell ; 28(9): 2326-2341, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27577790

RESUMO

Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganisms.

7.
New Phytol ; 197(1): 194-206, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121215

RESUMO

Legume-rhizobium interactions have been widely studied and characterized, and the disaccharide trehalose has been commonly detected during this symbiotic interaction. It has been proposed that trehalose content in nodules during this symbiotic interaction might be regulated by trehalase. In the present study, we assessed the role of trehalose accumulation by down-regulating trehalase in the nodules of common bean plants. We performed gene expression analysis for trehalase (PvTRE1) during nodule development. PvTRE1 was knocked down by RNA interference (RNAi) in transgenic nodules of the common bean. PvTRE1 expression in nodulated roots is mainly restricted to nodules. Down-regulation of PvTRE1 led to increased trehalose content (78%) and bacteroid number (almost one order of magnitude). In addition, nodule biomass, nitrogenase activity, and GOGAT transcript accumulation were significantly enhanced too. The trehalose accumulation, triggered by PvTRE1 down-regulation, led to a positive impact on the legume-rhizobium symbiotic interaction. This could contribute to the agronomical enhancement of symbiotic nitrogen fixation.


Assuntos
Phaseolus/microbiologia , Rhizobium etli/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/enzimologia , Simbiose , Trealase/metabolismo , Trealose/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Autofagia , Carga Bacteriana , Metabolismo dos Carboidratos , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Viabilidade Microbiana , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Phaseolus/enzimologia , Phaseolus/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Nodulação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Regiões Promotoras Genéticas , Interferência de RNA , Rhizobium etli/isolamento & purificação , Rhizobium etli/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Transformação Genética , Trealase/genética
8.
BMC Genomics ; 13: 83, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22394504

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. RESULTS: Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. CONCLUSIONS: This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Phaseolus/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Isoformas de RNA/genética , Precursores de RNA/genética
9.
BMC Plant Biol ; 11: 134, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21985276

RESUMO

BACKGROUND: The legume-rhizobium symbiosis requires the formation of root nodules, specialized organs where the nitrogen fixation process takes place. Nodule development is accompanied by the induction of specific plant genes, referred to as nodulin genes. Important roles in processes such as morphogenesis and metabolism have been assigned to nodulins during the legume-rhizobium symbiosis. RESULTS: Here we report the purification and biochemical characterization of a novel nodulin from common bean (Phaseolus vulgaris L.) root nodules. This protein, called nodulin 41 (PvNod41) was purified through affinity chromatography and was partially sequenced. A genomic clone was then isolated via PCR amplification. PvNod41 is an atypical aspartyl peptidase of the A1B subfamily with an optimal hydrolytic activity at pH 4.5. We demonstrate that PvNod41 has limited peptidase activity against casein and is partially inhibited by pepstatin A. A PvNod41-specific antiserum was used to assess the expression pattern of this protein in different plant organs and throughout root nodule development, revealing that PvNod41 is found only in bean root nodules and is confined to uninfected cells. CONCLUSIONS: To date, only a small number of atypical aspartyl peptidases have been characterized in plants. Their particular spatial and temporal expression patterns along with their unique enzymatic properties imply a high degree of functional specialization. Indeed, PvNod41 is closely related to CDR1, an Arabidopsis thaliana extracellular aspartyl protease involved in defense against bacterial pathogens. PvNod41's biochemical properties and specific cell-type localization, in uninfected cells of the common bean root nodule, strongly suggest that this aspartyl peptidase has a key role in plant defense during the symbiotic interaction.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Phaseolus/enzimologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/genética , Sequência de Bases , Clonagem Molecular , Proteínas de Membrana/genética , Dados de Sequência Molecular , Phaseolus/genética , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Nódulos Radiculares de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
10.
Plant Mol Biol ; 70(4): 385-401, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19353277

RESUMO

MicroRNAs (miRNAs) are small RNA molecules recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data. We are interested in the identification of miRNAs in Phaseolus vulgaris (common bean) to uncover different plant strategies to cope with adverse conditions and because of its relevance as a crop in developing countries. Here we present the identification of conserved and candidate novel miRNAs in P. vulgaris present in different organs and growth conditions, including drought, abscisic acid treatment, and Rhizobium infection. We also identified cDNA sequences in public databases that represent the corresponding miRNA precursors. In addition, we predicted and validated target mRNAs amongst reported EST and cDNAs for P. vulgaris. We propose that the novel miRNAs present in common bean and other legumes, are involved in regulation of legume-specific processes including adaptation to diverse external cues.


Assuntos
MicroRNAs/genética , Phaseolus/genética , RNA de Plantas/genética , Ácido Abscísico/farmacologia , Sequência de Bases , Northern Blotting , Temperatura Baixa , Sequência Conservada , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Phaseolus/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , RNA de Plantas/química , RNA de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/farmacologia , Glycine max/genética , Água/farmacologia
11.
Physiol Plant ; 135(3): 237-45, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19140892

RESUMO

Phospholipase C (PLC) has been suggested to have a role in signal perception by Nod factors (NFs) in legume root hair cells. For instance, mastoparan, a well-described agonist of heterotrimeric G protein, induces nodulin expression after NFs treatment or Rhizobium inoculation. Furthermore, it has been recently demonstrated that mastoparan also mimics calcium oscillations induced by NFs, suggesting that PLC could play a key role during the nodulation process. In this study, we elucidate a biochemical relationship between PLC and heterotrimeric G proteins during NFs signaling in legumes. In particular, the effect of NFs on in vitro PLC activity from nodule membrane fractions in the presence of guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) and mastoparan was assayed. Our results indicate that for phosphatidylinositol 4,5 bisphosphate (PIP(2))-PLC, there is a specific activity of 20-27 nmol mg(-1) min(-1) in membrane fractions of nodules 18-20 days after inoculation with Rhizobium tropici. Interestingly, in the presence of 5 microM mastoparan, PIP(2)-PLC activity was almost double the basal level. In contrast, PIP(2)-PLC activity was downregulated by 1-10 microM GTPgammaS. Also, PLC activity was decreased by up to 64% in the presence of increasing concentrations of NFs (10(-8) to 10(-5) M). NFs are critical signaling molecules in rhizobia/legume symbiosis that can activate many of the plant's early responses during nodule development. Calcium spiking, kinases, PLC activity and possibly G proteins appear to be components downstream of the NFs perception pathway. Our results suggest the occurrence of a dual signaling pathway that could involve both G proteins and PLC in Phaseolus vulgaris during the development of root nodules.


Assuntos
Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Peptídeos/farmacologia , Phaseolus/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo , Raízes de Plantas/efeitos dos fármacos , Venenos de Vespas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Lipopolissacarídeos/metabolismo , Phaseolus/metabolismo , Nodulação , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobium/fisiologia , Simbiose
12.
Nat Protoc ; 2(7): 1819-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17641650

RESUMO

This transformation procedure generates, with high efficiency (70-90%), hairy roots in cultivars, landraces and accessions of Phaseolus vulgaris (common bean) and other Phaseolus spp. Hairy roots rapidly develop after wounding young plantlets with Agrobacterium rhizogenes, at the cotyledon node, and keeping the plants in high-humidity conditions. Callogenesis always precedes hairy-root formation, and after 15 days, when roots develop at wounded sites, the stem with the normal root is cleaved below the hairy root zone. Transgenic roots and nodules co-transformed with a binary vector can be easily identified using a reporter gene. This procedure, in addition to inducing robust transgenic hairy roots that are susceptible to being nodulated by rhizobia and to fixing nitrogen efficiently, sets the foundation for a high-throughput functional genomics approach on the study of root biology and root-microbe interactions. This protocol can be completed within 30 days.


Assuntos
Regulação Bacteriana da Expressão Gênica , Phaseolus/genética , Phaseolus/microbiologia , Rhizobium/genética , Ração Animal , Animais , Fabaceae/microbiologia , Alimentos , Humanos , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Reprodutibilidade dos Testes , Transformação Bacteriana
13.
Mol Plant Microbe Interact ; 19(12): 1385-93, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17153923

RESUMO

A fast, reproducible, and efficient transformation procedure employing Agrobacterium rhizogenes was developed for Phaseolus vulgaris L. wild accessions, landraces, and cultivars and for three other species belonging to the genus Phaseolus: P. coccineus, P. lunatus, and P. acutifolius. Induced hairy roots are robust and grow quickly. The transformation frequency is between 75 and 90% based on the 35-S promoter-driven green fluorescent protein and beta-glucuronidase expression reporter constructs. When inoculated with Rhizobium tropici, transgenic roots induce normal determinate nodules that fix nitrogen as efficiently as inoculated standard roots. The A. rhizogenes-induced hairy root transformation in the genus Phaseolus sets the foundation for functional genomics programs focused on root physiology, root metabolism, and root-microbe interactions.


Assuntos
Genômica/métodos , Phaseolus/genética , Rhizobium/genética , Transformação Genética , Southern Blotting , Glucuronidase/análise , Proteínas de Fluorescência Verde/análise , Fixação de Nitrogênio , Phaseolus/crescimento & desenvolvimento , Phaseolus/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Reação em Cadeia da Polimerase , Rhizobium tropici/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...