Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36979611

RESUMO

Electrophotonic (EPh) circuits are novel systems where photons and electrons can be controlled simultaneously in the same integrated circuit, attaining the development of innovative sensors for different applications. In this work, we present a complementary metal-oxide-semiconductor (CMOS)-compatible EPh circuit for biotin sensing, in which a silicon-based light source is monolithically integrated. The device is composed of an integrated light source, a waveguide, and a p-n photodiode, which are all fabricated in the same chip. The functionalization of the waveguide's surface was investigated to biotinylate the EPh system for potential biosensing applications. The modified surfaces were characterized by AFM, optical microscopy, and Raman spectroscopy, as well as by photoluminescence measurements. The changes on the waveguide's surface due to functionalization and biotinylation translated into different photocurrent intensities detected in the photodiode, demonstrating the potential uses of the EPh circuit as a biosensor.


Assuntos
Técnicas Biossensoriais , Biotina , Silício/química , Desenho de Equipamento , Técnicas Biossensoriais/métodos , Semicondutores
2.
Small ; 19(17): e2206399, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36720043

RESUMO

Semiconductor nanowires have demonstrated fascinating properties with applications in a wide range of fields, including energy and information technologies. Particularly, increasing attention has focused on SiGe nanowires for applications in a thermoelectric generation. In this work, a bottom-up vapour-liquid-solid chemical vapour Deposition methodology is employed to integrate heavily boron-doped SiGe nanowires on thermoelectric generators. Thermoelectrical properties -, i.e., electrical and thermal conductivities and Seebeck coefficient - of grown nanowires are fully characterized at temperatures ranging from 300 to 600 K, allowing the complete determination of the Figure-of-merit, zT, with obtained values of 0.4 at 600 K for optimally doped nanowires. A correlation between doping level, thermoelectric performance, and elemental distribution is established employing advanced elemental mapping (synchrotron-based nano-X-ray fluorescence). Moreover, the operation of p-doped SiGe NWs integrated into silicon micromachined thermoelectrical generators is shown over standalone and series- and parallel-connected arrays. Maximum open circuit voltage of 13.8 mV and power output as high as 15.6 µW cm-2 are reached in series and parallel configurations, respectively, operating upon thermal gradients generated with hot sources at 200 °C and air flows of 1.5 m s-1 . These results pave the way for direct application of SiGe nanowire-based micro-thermoelectric generators in the field of the Internet of Things.

3.
Nanoscale ; 13(15): 7252-7265, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889903

RESUMO

Semiconductor nanowires have demonstrated fascinating properties with application in a wide range of fields including energy and information technologies. In particular, increasing attention has been focused on Si and SiGe nanowires for application in thermoelectric generation after recent successful implementation in miniaturized devices. Despite this interest, an appropriate evaluation of thermal conductivity in such nanostructures still poses a great challenge, especially if the characterization of the device-integrated nanowire is desired. In this work, a spatially resolved technique based on scanning thermal microscopy has been demonstrated for the assessment of the thermal conductivity of Si and SiGe nanowires integrated in thermoelectrical microgenerators. Thermal conductivity values of 15.8 ± 0.8 W m-1 K-1 and 4.2 ± 0.3 W m-1 K-1 were measured for Si and SiGe nanowires, respectively, epitaxially grown on silicon microstructures. Moreover, the range of applicability according to the sample thermal conductance and associated errors are discussed to establish the potential of the novel technique. The results presented here show the remarkable utility of scanning thermal microscopy for the challenging thermal characterization of integrated nanostructures and the development of multiple devices such as thermoelectric generators or photovoltaic cells.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670539

RESUMO

The thermoelectric performance of nanostructured low dimensional silicon and silicon-germanium has been functionally compared device-wise. The arrays of nanowires of both materials, grown by a VLS-CVD (Vapor-Liquid-Solid Chemical Vapor Deposition) method, have been monolithically integrated in a silicon micromachined structure in order to exploit the improved thermoelectric properties of nanostructured silicon-based materials. The device architecture helps to translate a vertically occurring temperature gradient into a lateral temperature difference across the nanowires. Such thermocouple is completed with a thin film metal leg in a unileg configuration. The device is operative on its own and can be largely replicated (and interconnected) using standard IC (Integrated Circuits) and MEMS (Micro-ElectroMechanical Systems) technologies. Despite SiGe nanowires devices show a lower Seebeck coefficient and a higher electrical resistance, they exhibit a much better performance leading to larger open circuit voltages and a larger overall power supply. This is possible due to the lower thermal conductance of the nanostructured SiGe ensemble that enables a much larger internal temperature difference for the same external thermal gradient. Indeed, power densities in the µW/cm2 could be obtained for such devices when resting on hot surfaces in the 50-200 °C range under natural convection even without the presence of a heat exchanger.

5.
Materials (Basel) ; 11(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883393

RESUMO

Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...