Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827227

RESUMO

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Assuntos
Epinefrina , Cininas , Camundongos , Animais , Homeostase , Catecolaminas , Glucose , Norepinefrina
3.
Biomedicines ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37626691

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is to decrease the inflammation features of AKI and, consequently, the transition to CKD. METHODS: C57Bl6J mice were anesthetized, and surgery was performed to induce unilateral ischemia/reperfusion as a model of AKI to CKD transition. For acute studies, the animals received the Kinin B1 receptor (B1R) antagonist before the surgery, and for the chronic model, the animals received one additional dose after the surgery. In addition, B1R genetically deficient mice were also challenged with ischemia/reperfusion. RESULTS: The absence and antagonism of B1R improved the kidney function following AKI and prevented CKD transition, as evidenced by the preserved renal function and prevention of fibrosis. The protective effect of B1R antagonism or deficiency was associated with increased levels of macrophage type 2 markers in the kidney. CONCLUSIONS: The B1R is pivotal to the evolution of AKI to CKD, and its antagonism shows potential as a therapeutic tool in the prevention of CKD following AKI.

4.
Life Sci ; 294: 120007, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600938

RESUMO

The liver has an essential role in responding to metabolic demands under stress conditions. The organ stores, releases, and recycles metabolism-related substrates. However, it is not clear how the Kallikrein-Kinin System modulates metabolic flexibility shift between energetic sources. AIMS: To analyze the hepatic metabolism in kinin B1 receptor deficient mice (B1KO mice) under fasting conditions. MAIN METHODS: WT and B1KO male mice were allocated in a calorimetric cage for 7 days and 48 h before the euthanasia, half of the animals of both groups were under fasting conditions. Biochemical parameters, ketone bodies (KB), and gene expression involving the liver energetic metabolism genes were evaluated. KEY FINDINGS: Kinin B1 receptor (B1R) modulates the metabolic shift under fasting conditions, reducing the VO2 expenditure. A preference for carbohydrates as an energetic source is suggested, as the B1KO group did not display an increase in KB in the serum. Moreover, the B1KO animals displayed higher serum triglycerides concentration compared to WT fasting mice. Interestingly, the lack of B1R induces the increase expression of enzymes from the glycolysis and lipolysis pathways under the fed. However, under fasting, the enzymatic expression of gluconeogenesis, glyceroneogenesis, and ketogenesis of these pathways does not occur, suggesting an absence of the shift metabolism responsivity, and this condition is modulated by PDK4 under FOXO1 control. SIGNIFICANCE: B1R has an important role in the hepatic glucose metabolism, which in turn influences the energetic metabolism, and in long-term outcomes, such as in the decrease in hepatic glycogen stores and in the enhancement of hepatic metabolism.


Assuntos
Jejum , Gluconeogênese , Lipogênese , Fígado/metabolismo , Receptor B1 da Bradicinina/fisiologia , Estresse Fisiológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Biomedicines ; 9(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356833

RESUMO

Anemia is a common feature of chronic kidney disease (CKD). It is a process related to erythropoietin deficiency, shortened erythrocyte survival, uremic erythropoiesis inhibitors, and disordered iron homeostasis. Animal models of CKD-induced anemia are missing and would be desirable in order to study anemia mechanisms and facilitate the development of novel therapeutic tools. We induced three different models of CKD in mice and evaluated the development of anemia characteristics. Mice were subjected to unilateral ischemia-reperfusion or received repeated low doses of cisplatin or folic acid to induce nephropathy. Renal function, kidney injury and fibrotic markers were measured to confirm CKD. Moreover, serum hemoglobin, ferritin and erythropoietin were analyzed. Renal mRNA levels of HIF-2α, erythropoietin, hepcidin, GATA-2, and GATA-2 target genes were also determined. All three CKD models presented increased levels of creatinine, urea, and proteinuria. Renal up-regulation of NGAL, KIM-1, and TNF-α mRNA levels was observed. Moreover, the three CKD models developed fibrosis and presented increased fibrotic markers and α-SMA protein levels. CKD induced decreased hemoglobin and ferritin levels and increased erythropoietin levels in the serum. Renal tissue showed decreased erythropoietin and HIF-2α mRNA levels, while an increase in the iron metabolism regulator hepcidin was observed. GATA-2 transcription factor (erythropoietin repressor) mRNA levels were increased in all CKD models, as well as its target genes. We established three models of CKD-induced anemia, regardless of the mechanism and severity of kidney injury.

6.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049997

RESUMO

Cisplatin is a chemotherapy drug widely used in the treatment of solid tumors. However, nephrotoxicity has been reported in about one-third of patients undergoing cisplatin therapy. Proximal tubules are the main target of cisplatin toxicity and cellular uptake; elimination of this drug can modulate renal damage. Organic transporters play an important role in the transport of cisplatin into the kidney and organic cations transporter 2 (OCT-2) has been shown to be one of the most important transporters to play this role. On the other hand, multidrug and toxin extrusion 1 (MATE-1) transporter is the main protein that mediates the extrusion of cisplatin into the urine. Cisplatin nephrotoxicity has been shown to be enhanced by increased OCT-2 and/or reduced MATE-1 activity. Peroxisome proliferator-activated receptor alpha (PPAR-α) is the transcription factor which controls lipid metabolism and glucose homeostasis; it is highly expressed in the kidneys and interacts with both MATE-1 and OCT-2. Considering the above, we treated wild-type and PPAR-α knockout mice with cisplatin in order to evaluate the severity of nephrotoxicity. Cisplatin induced renal dysfunction, renal inflammation, apoptosis and tubular injury in wild-type mice, whereas PPAR-α deletion protected against these alterations. Moreover, we observed that cisplatin induced down-regulation of organic transporters MATE-1 and OCT-2 and that PPAR-α deletion restored the expression of these transporters. In addition, PPAR-α knockout mice at basal state showed increased MATE-1 expression and reduced OCT-2 levels. Here, we show for the first time that PPAR-α deletion protects against cisplatin nephrotoxicity and that this protection is via modulation of the organic transporters MATE-1 and OCT-2.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , PPAR alfa/genética , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação para Baixo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/genética , PPAR alfa/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Front Physiol ; 11: 768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765291

RESUMO

Introduction: Lipopolysaccharide (LPS) is a systemic response-triggering endotoxin, which has the kidney as one of its first targets, thus causing acute injuries to this organ. Physical exercise is capable of promoting physiological alterations and modulating inflammatory responses in the infectious process through multiple parameters, including the toll-like receptor (TLR)-4 pathway, which is the main LPS signaling in sepsis. Additionally, previous studies have shown that physical exercise can be both a protector factor and an aggravating factor for some kidney diseases. This study aims at analyzing whether physical exercise before the induction of LPS endotoxemia can protect kidneys from acute kidney injury. Methods: C57BL/6J male mice, 12 weeks old, were distributed into four groups: (1) sedentary (control, N = 7); (2) sedentary + LPS (N = 7); (3) trained (N = 7); and (4) trained + LPS (N = 7). In the training groups, the animals exercised 5×/week in a treadmill, 60 min/day, for 4 weeks (60% of max. velocity). Sepsis was induced in the training group by the application of a single dose of LPS (5 mg/kg i.p.). Sedentary animals received LPS on the same day, and the non-LPS groups received a saline solution instead. All animals were euthanized 24 h after the administration of LPS or saline. Results: The groups receiving LPS presented a significant increase in serum urea (p < 0.0001) and creatinine (p < 0.001) concentration and renal gene expression of inflammatory markers, such as tumor necrosis factor alpha and interleukin-6, as well as TLRs. In addition, LPS promoted a decrease in reduced glutathione. Compared to the sedentary + LPS group, trained + LPS showed overexpression of a gene related to kidney injury (NGAL, p < 0.01) and the protein levels of LPS receptor TLR-4 (p < 0.01). Trained + LPS animals showed an expansion of the tubulointerstitial space in the kidney (p < 0.05) and a decrease in the gene expression of hepatic AOAH (p < 0.01), an enzyme involved in LPS clearance. Conclusion: In contrast to our hypothesis, training was unable to mitigate the renal inflammatory response caused by LPS. On the contrary, it seems to enhance injury by accentuating endotoxin-induced TLR-4 signaling. This effect could be partly due to the modulation of a hepatic enzyme that detoxifies LPS.

8.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708962

RESUMO

Hypercholesterolemia, also called high cholesterol, is a form of hyperlipidemia, which may be a consequence of diet, obesity or diabetes. In addition, increased levels of low-density lipoprotein (LDL) and reduced levels of high-density lipoprotein (HDL) cholesterol are associated with a higher risk of atherosclerosis and coronary heart disease. Thus, controlling cholesterol levels is commonly necessary, and fibrates have been used as lipid-lowering drugs. Gemfibrozil is a fibrate that acts via peroxisome proliferator-activated receptor alpha to promote changes in lipid metabolism and decrease serum triglyceride levels. However, anemia and leukopenia are known side effects of gemfibrozil. Considering that gemfibrozil may lead to anemia and that gemfibrozil acts via peroxisome proliferator-activated receptor alpha, we treated wild-type and peroxisome proliferator-activated receptor alpha-knockout mice with gemfibrozil for four consecutive days. Gemfibrozil treatment led to anemia seven days after the first administration of the drug; we found reduced levels of hemoglobin, as well as red blood cells, white blood cells and a reduced percentage of hematocrits. PPAR-alpha-knockout mice were capable of reversing all of those reduced parameters induced by gemfibrozil treatment. Erythropoietin levels were increased in the serum of gemfibrozil-treated animals, and we also observed an increased expression of hypoxia-inducible factor-2 alpha (HIF-2α) and erythropoietin in renal tissue, while PPAR-alpha knockout mice treated with gemfibrozil did not present increased levels of serum erythropoietin or tissue HIF-2α and erythropoietin mRNA levels in the kidneys. We analyzed bone marrow and found that gemfibrozil reduced erythrocytes and hematopoietic stem cells in wild-type mice but not in PPAR-alpha-knockout mice, while increased colony-forming units were observed only in wild-type mice treated with gemfibrozil. Here, we show for the first time that gemfibrozil treatment leads to anemia and leukopenia via peroxisome proliferator-activated receptor alpha in mice.


Assuntos
Anemia/induzido quimicamente , Genfibrozila/efeitos adversos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hipolipemiantes/efeitos adversos , Leucopenia/induzido quimicamente , PPAR alfa/metabolismo , Anemia/metabolismo , Animais , Contagem de Células , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Leucopenia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Molecules ; 25(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963528

RESUMO

Metformin is the first-line drug for type 2 diabetes mellitus control. It is established that this drug traffics through OCT-2 and MATE-1 transporters in kidney tubular cells and is excreted in its unaltered form in the urine. Hereby, we provide evidence that points towards the metformin-dependent upregulation of OCT-2 and MATE-1 in the kidney via the transcription factor proliferator-activated receptor alpha (PPARα). Treatment of wild type mice with metformin led to the upregulation of the expression of OCT-2 and MATE-1 by 34% and 157%, respectively. An analysis in a kidney tubular cell line revealed that metformin upregulated PPARα and OCT-2 expression by 37% and 299% respectively. MK-886, a PPARα antagonist, abrogated the OCT-2 upregulation by metformin and reduced MATE-1 expression. Conversely, gemfibrozil, an agonist of PPARα, elicited the increase of PPARα, OCT-2, and MATE-1 expression by 115%, 144%, and 376%, respectively. PPARα knockout mice failed to upregulate both the expression of OCT-2 and MATE-1 in the kidney upon metformin treatment, supporting the PPARα-dependent metformin upregulation of the transporters in this organ. Taken together, our data sheds light on the metformin-induced mechanism of transporter modulation in the kidney, via PPARα, and this effect may have implications for drug safety and efficacy.


Assuntos
Rim/química , Metformina/administração & dosagem , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/genética , PPAR alfa/genética , Animais , Linhagem Celular , Genfibrozila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Indóis/farmacologia , Rim/efeitos dos fármacos , Masculino , Metformina/farmacologia , Camundongos , Regulação para Cima/efeitos dos fármacos
10.
Nutr Metab (Lond) ; 12: 56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26690877

RESUMO

BACKGROUND: Physical exercise induces positive alterations in gene expression involved in the metabolism of obesity. Maternal exercise provokes adaptations soon after birth in the offspring. Here, we investigated whether adult mouse offspring of swim-trained mothers is protected against the development of the deleterious effects of high fat diet (HFD). METHODS: Our study comprises two parts. First, female C57BL/6 mice were divided into one sedentary and one swim-trained group (before and during pregnancy, n = 18). In the second part, adult offspring (n = 12) of trained and sedentary mothers was challenged to HFD for 16 weeks. Notably, most of the analysis was done in male offspring. RESULTS: Our results demonstrate that maternal exercise has several beneficial effects on the mouse offspring and protects them from the deleterious effects of HFD in the adult. Specifically, swimming during pregnancy leads to lower birth weight in offspring through 2 months of age. When subjected to HFD for 4 month in the adulthood, our study presents novel data on the male offspring's metabolism of trained mothers. The offspring gained less weight, which was accompanied by less body fat, and they used more calories during daytime compared with offspring of sedentary mothers. Furthermore, we observed increased adiponectin expression in skeletal muscle, which was accompanied by decreased leptin levels and increased insulin sensitivity. Decreased interleukin-6 expression and increased peptide PYY levels were observed in sera of adult offspring of mothers that swam during pregnancy. CONCLUSIONS: Our results point to the conclusion that maternal exercise is beneficial to protect the offspring from developing obesity, which could be important for succeeding generations as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA