Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 151: 112095, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689855

RESUMO

Skin cancer is a public health problem due to its high incidence. Ultraviolet radiation (UVR) is the main etiological agent of this disease. Photochemoprotection involves the use of substances to avoid damage caused by UV exposure. The aim of this work was to determine the phytochemical fingerprint and photochemoprotective effect against UVB radiation-induced skin damage such as erythema and carcinogenesis of H. mociniana methanolic extract (MEHm). The chemical composition of the MEHm was analysed by LC/ESI-MS/MS. Three quercetin derivatives, two pectinolides, and two caffeic acid derivatives were identified in the methanolic extract. MEHm has antioxidant effect and it is not cytotoxic in HaCaT cells. Phytochemicals from H. mociniana have a photochemopreventive effect because they absorb UV light and protect HaCaT cells from UVR-induced cell death. Also, in SKH-1 mice -acute exposure-, it decreased erythema formation, modulating the inflammatory response, reduced the skin damage according to histological analysis and diminished p53 expression. Finally, MEHm protects from photocarcinogenesis by reducing the incidence and multiplicity of skin carcinomas in SKH-1 mice exposed chronically to UVB radiation.


Assuntos
Eritema/prevenção & controle , Hyptis/química , Neoplasias Induzidas por Radiação/prevenção & controle , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Protetores contra Radiação/farmacologia , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular , Eritema/etiologia , Feminino , Humanos , Camundongos , Camundongos Pelados , Neoplasias Cutâneas/patologia
2.
Food Chem Toxicol ; 124: 411-422, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30576709

RESUMO

Dyssodia tagetiflora is known as 'Tzaracata' and 'flor de muerto'. Recently, D. tagetiflora has been reported to have antioxidant activities in its polar extracts as well as insecticidal activities. Hyperoside (1), avicularin (2) and avicularin acetate (3) have been isolated previously. However, the temporary variation in glycoside flavonoids biosynthesis, as well as antibacterial and chemoprotective activities, have not been reported. The amount of 1, 2 and 3 in the different collections was characterized by HPLC-MS. Two new C-glycosides were characterized, quercetin-4'-methyl ether 6-C glucoside (A1) and quercetin-4'-methyl ether 8-C glucoside (A2), as well as [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxochromen-3-yl]3,4,5-trihydroxyoxane-2,6-dicarboxylate (A3). This is the first report of the presence of C-C flavonoid glycosides compounds in the genus Dyssodia. Hyperoside was the majority compound at all collections. The methanolic extracts of August 2016 and October 2017 were active against Micrococcus luteus and Bacillus subtillis. The methanolic extract has chemoprotective effects because, when applied topically in SKH-1 mice, it decreases the severity of epidermal damage induced by acute exposure to ultraviolet radiation. In addition, cutaneous photocarcinogenesis was decreased in mice treated with the extract. The methanolic extract of D. tagetiflora has chemoprotective properties by decreasing the damage caused by acute and chronic exposure to UV in mice.


Assuntos
Antibacterianos/farmacologia , Asteraceae/química , Flavonóis/farmacologia , Glicosídeos/farmacologia , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Animais , Antibacterianos/isolamento & purificação , Asteraceae/metabolismo , Bacillus subtilis/efeitos dos fármacos , Eritema/prevenção & controle , Feminino , Flavonóis/isolamento & purificação , Glicosídeos/isolamento & purificação , Inflamação/prevenção & controle , Camundongos , Micrococcus luteus/efeitos dos fármacos , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Extratos Vegetais/isolamento & purificação , Protetores contra Radiação/isolamento & purificação , Pele/patologia , Pele/efeitos da radiação , Fatores de Tempo , Raios Ultravioleta
3.
Food Chem Toxicol ; 91: 117-29, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26995226

RESUMO

Calophyllum brasiliense (Calophyllaceae) is a tropical rain forest tree distributed in Central and South America. It is an important source of tetracyclic dipyrano coumarins (Soulatrolide) and Mammea type coumarins. Soulatrolide is a potent inhibitor of HIV-1 reverse transcriptase and displays activity against Mycobacterium tuberculosis. Meanwhile, Mammea A/BA and A/BB, pure or as a mixture, are highly active against several human leukemia cell lines, Trypanosoma cruzi and Leishmania amazonensis. Nevertheless, there are few studies evaluating their safety profile. In the present work we performed toxicogenomic and toxicological analysis for both type of compounds. Soulatrolide, and the Mammea A/BA + A/BB mixture (2.1) were slightly toxic accordingly to Lorke assay classification (DL50 > 3000 mg/kg). After a short-term administration (100 mg/kg/daily, orally, 1 week) liver toxicogenomic analysis revealed 46 up and 72 downregulated genes for Mammea coumarins, and 665 up and 1077 downregulated genes for Soulatrolide. Gene enrichment analysis identified transcripts involved in drug metabolism for both compounds. In addition, network analysis through protein-protein interactions, tissue evaluation by TUNEL assay, and histological examination revealed no tissue damage on liver, kidney and spleen after treatments. Our results indicate that both type of coumarins displayed a safety profile, supporting their use in further preclinical studies to determine its therapeutic potential.


Assuntos
Calophyllum/química , Cumarínicos/toxicidade , Toxicogenética , Animais , Masculino , Camundongos , Medição de Risco
4.
Genom Data ; 6: 258-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697389

RESUMO

Calophyllum brasiliense (Calophyllaceae) is a tropical rain forest tree, mainly distributed in South and Central America. It is an important source of bioactive natural products like, for instance soulatrolide, and mammea type coumarins. Soulatrolide is a tetracyclic dipyranocoumarins and a potent inhibitor of HIV-1 reverse transcriptase and Mycobacterium tuberculosis. Mammea A/BA and A/BB coumarins, pure or as a mixture, are highly active against several leukemia cell lines, Trypanosoma cruzi and Leishmania amazonensis. In the present work, a toxicogenomic analysis of Soulatrolide and Mammea A/BA + A/BB (3:1) mixture was performed in order to validate the toxicological potential of this type of compounds. Soulatrolide or mixture of mammea A/BA + A/BB (3:1) was administered orally to male mice (CD-1) at dose of 100 mg/kg/daily, for 1 week. After this time, mice were sacrificed, and RNA extracted from the liver of treated animals. Transcriptomic analysis was performed using Affymetrix Mouse Gene 1.0 ST Array. Robust microarray analysis (RMA) and two way ANOVA test revealed for mammea mixture treatment 46 genes upregulated and 72 downregulated genes; meanwhile, for soulatrolide 665 were upregulated and 1077 downregulated genes. Enrichment analysis for such genes revealed that in both type of treatments genetic expression were mainly involved in drug metabolism. Overall results indicate a safety profile. The microarray data complies with MIAME guidelines and are deposited in GEO under accession number GSE72755.

5.
Scientometrics ; 105(2): 1019-1030, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-32214549

RESUMO

Tropical trees of Calophyllum genus (Calophyllaceae) have chemical and biological importance as potential source of secondary active metabolites which can lead to the development of new drugs. Research on this species has been rising since 1992 due to the discovering of anti-HIV properties of Calanolide A found in Calophyllum inophyllum leaves. This compound is the most important natural product for potential development of new anti-HIV drugs and phytomedicines. The scientometric analysis (1953-2014) here performed revealed that the most studied species of Calophyllum genus are: C. inophyllum and C. brasiliense, distributed in the Asian, and American continents, respectively. Current research on these species is carried out mainly in India and Brazil, respectively, where these species grow. Research on C. brasiliense is focused mainly on ecological, antiparasitic, cytotoxic properties, and isolation of new compounds. Chemical studies and biodiesel development are the main topics in the case of C. inophyllum. Text mining analysis revealed that coumarins, and xanthones are the main secondary active metabolites responsible for most of the reported pharmacological properties, and are potential compounds for the treatment of leukemia and against intracellular parasites causing American Trypanosomiasis and Leshmaniasis. On the other hand, C. inophyllum represents an important source for the development of 2nd generation biodiesel. Medicinal and industrial applications of these species may impulse sustainable forest plantations. To our knowledge this is the first scientometric and text mining analysis of chemical and biomedical research on Calophyllum genus, C. brasiliense and C. inophyllum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...