Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36676559

RESUMO

The article presents a theoretical study of the regimes of high-pressure torsion (HPT) for which slippage of the deforming material on the interfaces with anvils is possible. The approach taken is a generalisation of the currently accepted view of the HPT process. It enables a rational explanation of its salient features and the effects observed experimentally. These include a lag in the rotation angle of the specimen behind that of the anvils, an outflow of the material from the deformation zone, enhancement in gripping the specimen with anvils with increasing axial pressure, etc. A generalised condition for gripping the specimen with anvils, providing a basis for an analytical investigation of the HPT deformation at a qualitative level, is established. The results of the analytical modelling are supported by finite-element calculations. It is shown that for friction stress below the shear stress of the specimen material (i.e., for the friction factor m < 1), plastic deformation is furnished by non-shear flows, which expands the range of possible process regimes. The potential of these flow modes is impressive, which is reflected in the second meaning of the word "gripping" in the title of the article. Non-shear flows manifest themselves in the spreading of the material over the anvil surfaces whose cessation signifies the end of deformation and the beginning of slippage of the specimen as a whole. The model shows that for m < 1 such a finale is inevitable at any axial pressure. It predicts, however, that the highest achievable strain is increased when the axial pressure is raised in the course of the HPT process. Unlimited deformation of the specimen is only possible for m = 1, when slippage of the deforming material relative to the anvils is suppressed.

2.
Mater Sci Eng C Mater Biol Appl ; 130: 112464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702539

RESUMO

Cytotoxicity in vitro and anti-tumour activity in vivo of magnesium alloys Mg-6%Ag and Mg-10%Gd was studied. It was shown that specifically designed and thermomechanically processed Mg alloys produced a sizeable cytotoxic effect on PC-3 line tumour cells in vitro through inhibition of their proliferation. A pronounced grain refinement in combination with the formation of second phases and precipitates attained by means of equal-channel angular pressing (ECAP) accellerated the degradation and gave rise to enhanced anti-tumour activity of both alloys. The gadolinium-containing alloy outperformed the silver-containing one substantially. In an in vivo assay, intratumoural implantation of pins made from both alloys in the homogenised and the ECAP states in mice with inoculated B16 melanoma gave rise to an indubitable anti-tumour effect. It was documented in a decrease of Ki-67(+) cells and the occurrence of regions of destruction of tumoural tissue that were filled with gas evolving in the course of biodegradation of the implants. The data obtained suggest that intratumoural implantation of gadolinium-containing magnesium alloys can be considered for therapy of inoperable or chemoresistant forms of cancer.


Assuntos
Ligas , Melanoma , Implantes Absorvíveis , Ligas/farmacologia , Animais , Corrosão , Magnésio/farmacologia , Camundongos , Prata
3.
Adv Mater ; 33(3): e2005473, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300235

RESUMO

Structural patterns found in living organisms have long been inspiring biomimetic materials design. Here, it is suggested that a rich palette of patterns occurring in inanimate Nature, and especially in the Earth's lithosphere, could be not less inspirational for design of novel architectured materials. This materials design paradigm is referred to as lithomimetics and it is demonstrated that some of the patterns found in the lithosphere can be emulated by established processes of severe plastic deformation. This opens up interesting avenues for materials design in which potentially promising structural patterns are borrowed from the lithosphere's repository. The key aim here is to promulgate the "lithomimetics" paradigm as a promising approach to developing novel architectured materials.

4.
Sci Rep ; 10(1): 16101, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999352

RESUMO

Magnesium and its alloys attract increasingly wide attention in various fields, ranging from transport to medical solutions, due to their outstanding structural and degradation properties. These properties can be tailored through alloying and thermo-mechanical processing, which is often complex and multi-step, thus requiring in-depth analysis. In this work, we demonstrate the capability of synchrotron-based nanotomographic X-ray imaging methods, namely holotomography and transmission X-ray microscopy, for the quantitative 3D analysis of the evolution of intermetallic precipitate (particle) morphology and distribution in magnesium alloy Mg-5.78Zn-0.44Zr subjected to a complex multi-step processing. A rich history of variation of the intermetallic particle structure in the processed alloy provided a testbed for challenging the analytical capabilities of the imaging modalities studied. The main features of the evolving precipitate structure revealed earlier by traditional light and electron microscopy methods were confirmed by the 3D techniques of synchrotron-based X-ray imaging. We further demonstrated that synchrotron-based X-ray imaging enabled uncovering finer details of the variation of particle morphology and number density at various stages of processing-above and beyond the information provided by visible light and electron microscopy.

5.
J Biomed Mater Res B Appl Biomater ; 108(1): 167-173, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957969

RESUMO

In this study, a degradable magnesium alloy WE43 (Mg-3.56%Y-2.20%Nd-0.47%Zr) was used as a research object. To refine its microstructure from the initial homogenized one, the alloy was subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP). The data presented show that coincubation of tumor LNCaP and MDA-MB-231 cells with the WE43 alloy in the homogenized and the ECAP-processed states led to a decrease in their viability and proliferation. An increase in the concentration of Annexin V(+) cells during coincubation with samples in both microstructural states investigated was also observed. This is associated with the induction of apoptosis in the cell culture through contact with the samples. Concurrently, a significant drop in the concentration of Bcl-2(+) cells occurred. It was established that ECAP led to an enhancement of the cytotoxic activity of the alloy against tumor cells. This study demonstrated that alloy WE43 can be considered as a promising candidate for application in orthopedic implants in clinical oncology, where it could play a double role of a mechanically stable, yet bioresorbable, scaffold with local antitumor activity. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:167-173, 2020.


Assuntos
Implantes Absorvíveis , Ligas/farmacologia , Citotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Ligas/química , Linhagem Celular Tumoral , Citotoxinas/química , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
6.
Materials (Basel) ; 12(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690019

RESUMO

In this work, the effect of an ultrafine-grained (UFG) structure obtained by multiaxial deformation (MAD) on the mechanical properties, fatigue strength, biodegradation, and biocompatibility in vivo of the magnesium alloy WE43 was studied. The grain refinement down to 0.93 ± 0.29 µm and the formation of Mg41Nd5 phase particles with an average size of 0.34 ± 0.21 µm were shown to raise the ultimate tensile strength to 300 MPa. Besides, MAD improved the ductility of the alloy, boosting the total elongation from 9% to 17.2%. An additional positive effect of MAD was an increase in the fatigue strength of the alloy from 90 to 165 MPa. The formation of the UFG structure also reduced the biodegradation rate of the alloy under both in vitro and in vivo conditions. The relative mass loss after six weeks of experiment was 83% and 19% in vitro and 46% and 7% in vivo for the initial and the deformed alloy, respectively. Accumulation of hydrogen and the formation of necrotic masses were observed after implantation of alloy specimens in both conditions. Despite these detrimental phenomena, the desired replacement of the implant and the surrounding cavity with new connective tissue was observed in the areas of implantation.

7.
Materials (Basel) ; 12(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766395

RESUMO

The effect of equal-channel angular pressing (ECAP) on the microstructure, texture, mechanical properties, corrosion resistance and cytotoxicity of two magnesium-silver alloys, Mg-2.0%Ag and Mg-4.0%Ag, was studied. Their average grain size was found to be reduced to 3.2 ± 1.4 µm and 2.8 ± 1.3 µm, respectively. Despite the substantial grain refinement, a drop in the strength characteristics of the alloys was observed, which can be attributed to the formation of inclined basal texture. On a positive side, an increase in tensile ductility to ~34% for Mg-2.0%Ag and ~27% for Mg-4.0%Ag was observed. This effect can be associated with the activity of basal and prismatic slip induced by ECAP. One of the ECAP regimes tested gave rise to a drop in the corrosion resistance of both alloys. An interesting observation was a cytotoxic effect both alloys had on tumor cells in vitro. This effect was accompanied with the release of lactate dehydrogenase, an increase in oxidative stress, coupled with the induction of NO-ions and an increase in the content of such markers of apoptosis as Annexin V and Caspase 3/7. Differences in the chemical composition and the processing history-dependent microstructure of the alloys did not have any significant effect on the magnitude of their antiproliferative effect.

8.
Sci Rep ; 8(1): 11074, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038305

RESUMO

In this work, the mechanical characteristics of high-entropy alloy Co20Cr26Fe20Mn20Ni14 with low-stacking fault energy processed by cryogenic and room temperature high-pressure torsion (HPT) were studied. X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses were performed to identify the phase and microstructure variation and the mechanical properties characterized by Vickers hardness measurements and tensile testing. Cryogenic HPT was found to result in a lower mechanical strength of alloy Co20Cr26Fe20Mn20Ni14 than room temperature HPT. Microstructure analysis by SEM and TEM was conducted to shed light on the microstructural changes in the alloy Co20Cr26Fe20Mn20Ni14 caused by HPT processing. Electron microscopy data provided evidence of a deformation-induced phase transformation in the alloy processed by cryogenic HPT. Unusual softening phenomena induced by cryogenic HPT were characterized by analyzing the dislocation density as determined from X-Ray diffraction peak broadening.

9.
Sci Rep ; 7(1): 11844, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928369

RESUMO

Structural hierarchy is known to enhance the performance of many of Nature's materials. In this work, we apply the idea of hierarchical structure to topologically interlocked assemblies, obtained from measurements under point loading, undertaken on identical discrete block ensembles with matching non-planar surfaces. It was demonstrated that imposing a hierarchical structure adds to the load bearing capacity of topological interlocking assemblies. The deformation mechanics of these structures was also examined numerically by finite element analysis. Multiple mechanisms of surface contact, such as slip and tilt of the building blocks, were hypothesised to control the mechanical response of topological interlocking assemblies studied. This was confirmed using as a model a newly designed interlocking block, where slip was suppressed, which produced a gain in peak loading. Our study highlights the possibility of tailoring the mechanical response of topological interlocking assemblies using geometrical features of both the element geometry and the contact surface profile.

10.
Sci Rep ; 6: 26706, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216277

RESUMO

Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.

11.
J Biomed Mater Res B Appl Biomater ; 104(1): 141-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25677541

RESUMO

Blends of ductile Ti metal with polyetheretherketone (PEEK) polymer were studied with regard to their mechanical properties and in vitro biocompatibility. PEEK/Ti composites with various Ti contents, ranging from 0 vol % to 60 vol %, were produced by compression molding at 370°C. In all composites produced, regardless of the initial Ti content, Ti particles were well distributed in the PEEK matrix. Addition of Ti led to a significant increase in mechanical properties of PEEK. Specifically, an increase in Ti content enhanced compressive strength and stiffness, while preserving ductile fracture behavior. In addition, the use of Ti for reinforcement of PEEK provided the composites with improved in vitro biocompatibility in terms of the attachment, proliferation, and differentiation of MC3T3-E1 cells.


Assuntos
Diferenciação Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis/química , Cetonas/química , Teste de Materiais , Polietilenoglicóis/química , Titânio/química , Animais , Benzofenonas , Adesão Celular , Linhagem Celular , Camundongos , Polímeros
12.
Mater Sci Eng C Mater Biol Appl ; 59: 754-765, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652430

RESUMO

Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400°C was shown to produce unique properties.


Assuntos
Magnésio/química , Titânio/química , Temperatura Alta , Pressão
13.
Sci Rep ; 5: 10732, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040634

RESUMO

Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations.

14.
Appl Microbiol Biotechnol ; 99(16): 6831-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25895086

RESUMO

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (S a) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.


Assuntos
Aderência Bacteriana , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Propriedades de Superfície , Titânio , Humanos , Microscopia de Força Atômica
15.
Sci Rep ; 4: 3783, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24445490

RESUMO

The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed.

16.
J Biomed Mater Res A ; 102(2): 429-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23533169

RESUMO

Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Hidroxiapatitas/química , Implantes Experimentais , Magnésio/química , Teste de Materiais , Osteoblastos/metabolismo , Animais , Linhagem Celular , Corrosão , Camundongos , Osteoblastos/citologia
17.
J Biomed Mater Res B Appl Biomater ; 102(5): 913-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24259198

RESUMO

Porous Ti has been widely investigated for orthopedic and dental applications on account of their ability to promote implant fixation via bone ingrowth into pores. In this study, highly aligned porous Ti scaffolds coated with a bone morphogenetic protein (BMP)-loaded silica/chitosan hybrid were produced, and their bone regeneration ability was evaluated by in vivo animal experiments. Reverse freeze casting allowed for the creation of highly aligned pores, resulting in a high compressive strength of 254 ± 21 MPa of the scaffolds at a porosity level of ∼51 vol %. In addition, a BMP-loaded silica/chitosan hybrid coating layer with a thickness of ∼1 µm was uniformly deposited on the porous Ti scaffold, which enabled the sustained release of the BMP over a prolonged period of time up to 26 days. The cumulative amount of the BMP released was ∼4 µg, which was much higher than that released from the specimen without a hybrid coating layer. In addition, the bone regeneration ability of the porous Ti scaffold with a BMP-loaded silica/chitosan coating layer was examined by in vivo animal testing using a rabbit calvarial defect model and compared with those of the as-produced porous Ti scaffold and porous Ti scaffold with a silica/chitosan coating layer. After 4 weeks of healing, the specimen coated with a BMP-loaded silica/chitosan hybrid showed a much higher bone regeneration volume (∼36%) than the as-produced specimen (∼15%) (p < 0.005) and even the specimen coated with a silica/chitosan hybrid (∼25%) (p < 0.05).


Assuntos
Proteínas Morfogenéticas Ósseas , Regeneração Óssea/efeitos dos fármacos , Quitosana , Materiais Revestidos Biocompatíveis , Dióxido de Silício , Titânio , Animais , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/farmacologia , Quitosana/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais/métodos , Porosidade , Coelhos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Titânio/química , Titânio/farmacologia
18.
Biomed Res Int ; 2013: 914764, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936857

RESUMO

The effect of grain refinement of commercial purity titanium by equal channel angular pressing (ECAP) on its mechanical performance and bone tissue regeneration is reported. In vivo studies conducted on New Zealand white rabbits did not show an enhancement of biocompatibility of ECAP-modified titanium found earlier by in vitro testing. However, the observed combination of outstanding mechanical properties achieved by ECAP without a loss of biocompatibility suggests that this is a very promising processing route to bioimplant manufacturing. The study thus supports the expectation that commercial purity titanium modified by ECAP can be seen as an excellent candidate material for bone implants suitable for replacing conventional titanium alloy implants.


Assuntos
Materiais Biocompatíveis , Fenômenos Mecânicos , Próteses e Implantes , Titânio , Animais , Teste de Materiais , Osteoblastos/fisiologia , Coelhos , Propriedades de Superfície
19.
Mater Sci Eng C Mater Biol Appl ; 33(5): 2808-15, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623100

RESUMO

This paper reports a new approach to fabricating biocompatible porous titanium with controlled pore structure and net-shape. The method is based on using sacrificial Mg particles as space holders to produce compacts that are mechanically stable and machinable. Using magnesium granules and Ti powder, Ti/Mg compacts with transverse rupture strength (~85 MPa) sufficient for machining were fabricated by warm compaction, and a complex-shape Ti scaffold was eventually produced by removal of Mg granules from the net-shape compact. The pores with the average size of 132-262 µm were well distributed and interconnected. Due to anisotropy and alignment of the pores the compressive strength varied with the direction of compression. In the case of pores aligned with the direction of compression, the compressive strength values (59-280 MPa) high enough for applications in load bearing implants were achieved. To verify the possibility of controlled net-shape, conventional machining process was performed on Ti/Mg compact. Compact with screw shape and porous Ti scaffold with hemispherical cup shape were fabricated by the results. Finally, it was demonstrated by cell tests using MC3T3-E1 cell line that the porous Ti scaffolds fabricated by this technique are biocompatible.


Assuntos
Magnésio , Alicerces Teciduais , Titânio , Células 3T3 , Animais , Materiais Biocompatíveis , Força Compressiva , Camundongos , Microscopia Eletrônica de Varredura
20.
Acta Biomater ; 8(6): 2401-10, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22421310

RESUMO

Highly porous titanium with aligned large pores up to 500 µm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure; this was followed by freeze drying and sintering. As the casting time increased from 24 to 48 h, the initial columnar structures turned into lamellar structures, with the porosity decreasing from 69 to 51%. This reduction in porosity caused the compressive yield strength to increase from 121 to 302 MPa, with an elastic modulus of the samples being in the range of 2-5 GPa. In addition, it was demonstrated that reverse freeze casting can also be successfully applied to various other raw powders, suggesting that the method developed in this work opens up new avenues for the production of a range of porous metallic and ceramic scaffolds with highly aligned pores.


Assuntos
Congelamento , Titânio , Teste de Materiais , Microscopia Eletrônica de Varredura , Pós , Tomografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA