Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611363

RESUMO

The increasing popularity of home brewing and the fast evolution of craft beer companies have fuelled the interest in novel yeasts as the main actors diversifying the beer portfolio. Here, we have characterized the thermal tolerance and brewing-related features of two sourdough (SD) isolates of Saccharomyces cerevisiae, SDy01 and SDy02, at different temperatures, 20 and 37 °C, comparing them with commercial brew strains, AaB and kNB. The SD strains exhibited tolerance to the main brewing-related stress conditions and increased growth rates and lower lag phases than the reference beer strains at both temperatures. Consistent with this, SDy01 and SDy02 displayed higher fermentative activity in terms of sugar rate depletion and the release of metabolic by-products. Moreover, SDy01 and SDy02 brewing at 20 °C increased their total amount of volatile compounds (VOCs), in particular, their esters and carboxyl compounds, as compared to the reference AaB strain. In contrast, fermentation at 37 °C resulted in a drastic reduction in the number of VOCs in wort fermented with SD yeast, especially in its level of esters. In conclusion, our results stress the high fermentative performance of SD strains in beer wort and their ability to provide a complex and specific aromatic profile at a wide range of temperatures.

2.
Food Microbiol ; 120: 104474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431320

RESUMO

This work describes the characterization of an artisanal sourdough set of bakeries located in the city of Valencia. Culture-dependent and -independent analyses detected Fructilactobacillus sanfranciscensis, Saccharomyces cerevisiae and Kazachstania humilis as dominant species. Nevertheless, specific technological parameters, including backslopping temperature, dough yield, or the addition of salt affected microbial counting, LAB/Yeast ratio, and gassing performance, favouring the appearance of several species of Lactobacillus sp., Limosilactobacillus pontis or Torulaspora delbrueckii as additional players. Sourdough leavening activity was affected positively by yeast counts and negatively by the presence of salt. In addition, the predominance of a particular yeast species appeared to impact the dynamics of CO2 release. Seven important flavour-active compounds (ethyl acetate, 1-hexanol, 2-penthylfuran, 3-ethyl-2-methyl-1,3-hexadiene, 2-octen-1-ol, nonanal and 1-nonanol) were detected in all samples and together with 3-methyl butanol and hexyl acetate represented more than the 53% of volatile abundancy in nine of the ten sourdoughs analysed. Even so, the specific microbial composition of each sample influenced the volatile profile. For example, the occurrence of K. humilis or S. cerevisiae as dominant yeast influenced the composition of major alcohol species, while F. sanfranciscensis and L. pontis positively correlated with aldehydes and octanoic acid content. In addition, relevant correlations could be also found among different technological parameters and between these, volatile compounds and microbial species. Overall, our study emphasises on how differences in technological parameters generate biodiversity in a relatively small set of artisan sourdoughs providing opportunities for excellence and quality baking products.


Assuntos
Bioprospecção , Saccharomyces cerevisiae , Fermentação , Pão/análise , Biodiversidade , Farinha/análise , Microbiologia de Alimentos
3.
Microbiol Res ; 277: 127487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713908

RESUMO

Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Variações do Número de Cópias de DNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação , Fenótipo , Carioferinas/genética , Carioferinas/metabolismo
4.
J Fungi (Basel) ; 8(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205847

RESUMO

Slt2, the MAPK of the cell wall integrity (CWI) pathway, connects different signaling pathways and performs different functions in the protective response of S. cerevisiae to stress. Previous work has evidenced the relation of the CWI pathway and the unfolded protein response (UPR), a transcriptional program activated upon endoplasmic reticulum (ER) stress. However, the mechanisms of crosstalk between these pathways and the targets regulated by Slt2 under ER stress remain unclear. Here, we demonstrated that ectopic expression of GFA1, the gene encoding the first enzyme in the synthesis of UDP-GlcNAc by the hexosamine biosynthetic pathway (HBP) or supplementation of the growth medium with glucosamine (GlcN), increases the tolerance of slt2 mutant cells to different ER-stress inducers. Remarkably, GlcN also alleviates the sensitivity phenotype of cells lacking IRE1 or HAC1, the main actors in controlling the UPR. The exogenous addition of GlcN reduced the abundance of glycosylated proteins and triggered autophagy. We also found that TORC1, the central stress and growth controller, is inhibited by tunicamycin exposure in cells of the wild-type strain but not in those lacking Slt2. Consistent with this, the tunicamycin-induced activation of autophagy and the increased synthesis of ATP in response to ER stress were absent by knock-out of SLT2. Altogether, our data placed Slt2 as an essential actor of the ER stress response by regulating the HBP activity and the TORC1-dependent signaling.

5.
Front Cell Dev Biol ; 8: 592159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282871

RESUMO

Hyperphosphorylation of protein tau is a hallmark of Alzheimer's disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altered tau phosphorylation. Lack of inositol hexakisphosphate kinases Kcs1 and Vip1 (IP6 and IP7 kinases in mammals) increased tau hyperphosphorylation. Similar effects were found by mutation of IPK2 (inositol polyphosphate multikinase), or PLC1, the yeast phospholipase C gene. These effects may be explained by IP-mediated regulation of Pho85. Indeed, this appeared to be the case for plc1, ipk2, and kcs1. However, the effects of Vip1 on tau phosphorylation were independent of the presence of Pho85, suggesting additional mechanisms. Interestingly, kcs1 and vip1 strains, like pho85, displayed dysregulated sphingolipid (SL) metabolism. Moreover, genetic and pharmacological inhibition of SL biosynthesis stimulated the appearance of hyperphosphorylated forms of tau, while increased flux through the pathway reduced its abundance. Finally, we demonstrated that Sit4, the yeast ortholog of human PP2A protein phosphatase, is a downstream effector of SL signaling in mediating the tau phosphorylation state. Altogether, our results add new knowledge on the molecular effectors involved in tauopathies and identify new targets for pharmacological intervention.

6.
Microb Biotechnol ; 13(4): 1066-1081, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32212314

RESUMO

The modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin-tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl-CoA carboxylase Acc1, the rate-limiting enzyme in fatty acid de novo production, supporting a change in lipid metabolism during ALE. In line with this, characterization of two randomly selected clones, LH03 and LH09, showed the presence of lipids with increased saturation degree and reduced acyl length. In addition, the clone LH03, which displays the greater improvement in fitness at 40°C, exhibited higher SL content as compared with the parental strain. Analysis of the LH03 and LH09 genomes revealed a loss of chromosomes affecting genes that have a role in fatty acid synthesis and elongation. The link between ploidy level and growth at high temperature was further supported by the analysis of a fully isogenic set of yeast strains with ploidy between 1N and 4N which showed that the loss of genome content provides heat tolerance. Consistent with this, a thermotolerant evolved population (LH40°) generated from the parental LH strain by heat-driven ALE exhibited a reduction in the chromosome copy number. Thus, our results identify myriocin-driven evolution as a powerful approach to investigate the mechanisms of acquired thermotolerance and to generate improved strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Termotolerância , Ácidos Graxos Monoinsaturados , Laboratórios , Saccharomyces cerevisiae/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-31678512

RESUMO

Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade transmitted to cytosolic diphosphoinositol phosphate derivatives, among them 5-PP-IP4 and 1-IP7, that exert regulatory functions on genes involved in the inositol and phospholipids (PLs) metabolism, and inhibit the activity of the protein kinase Pho85. Consistent with this, cold exposure triggers a specific program of neutral lipids and PLs changes. Furthermore, we identified Pho85 as playing a key role in controlling the synthesis of long-chain bases (LCBs) via the Ypk1-Orm2 regulatory circuit. We conclude that Pho85 orchestrates a coordinated response of lipid metabolic pathways that ensure yeast thermal adaptation.


Assuntos
Aclimatação/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Membrana Celular/metabolismo , Temperatura Baixa/efeitos adversos , Regulação Fúngica da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Fluidez de Membrana/fisiologia , Redes e Vias Metabólicas/fisiologia , Transdução de Sinais/fisiologia
8.
Microb Biotechnol ; 13(2): 562-571, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31743950

RESUMO

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis-related and glycolysis-unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its ability to interact with Tdh1 and/or Tdh2 to form hybrid complexes. However, no direct evidence of the existence of these interactions has been provided and the exact function of Tdh1,2 is unknown. Here, we show that Tdh1,2 immunopurified with a GFP-tagged version of Tdh3 and that lack of this interaction stimulates the Tdh3's aggregation. Furthermore, we found that the combined knockout of TDH1 and TDH2 promotes the loss of cell's viability and increases the growing rate, glucose consumption and CO2 production, suggesting a higher glycolytic flux in the mutant cells. Consistent with this, the tdh3 strain, which displays impaired in vitro GAPDH activity, exhibited the opposite phenotypes. Quite remarkably, tdh1 tdh2 mutant cells show increased sensitivity to aureobasidin A, an inhibitor of the inositolphosphoryl ceramide synthase, while cells lacking Tdh3 showed improved tolerance. The results are in agreement with a link between glycolysis and sphingolipid (SLs) metabolism. Engineering Tdh activity could be thus exploited to alter the SLs status with consequences in different aspects of yeast biotechnology.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Esfingolipídeos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise , Isoenzimas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochim Biophys Acta Gene Regul Mech ; 1860(7): 803-811, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28258010

RESUMO

Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair machinery.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
BMC Genomics ; 17: 183, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26939779

RESUMO

BACKGROUND: The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. RESULTS: In order to cast light on the molecular functions of NC2, we performed genome-wide studies in conditional mutants in yeast NC2 essential subunits Ydr1 and Bur6. Our analyses show a generally increased level of cryptic transcription in all kinds of genes upon depletion of NC2 subunits, and that each kind of gene (canonical or ncRNAs, TATA or TATA-like) shows some differences in the cryptic transcription pattern for each NC2 mutant. CONCLUSIONS: We conclude that NC2 plays a general role in transcription initiation in RNA polymerase II genes that is related with its known TBP interchange function from free to promoter bound states. Therefore, loss of the NC2 function provokes increases in cryptic transcription throughout the yeast genome. Our results also suggest functional differences between NC2 subunits Ydr1 and Bur6.


Assuntos
Fosfoproteínas/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Repressoras/genética , Proteína de Ligação a TATA-Box/genética , Transcriptoma
11.
Biochim Biophys Acta ; 1849(11): 1354-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26455955

RESUMO

Recent studies suggest that RNA polymerase II (Pol II) has to be fully assembled before being imported into the nucleus, while other reports indicate a distinct mechanism to import large and small subunits. In yeast, Iwr1 binds to the holoenzyme assembled in the cytoplasm and directs its nuclear entry. However, as IWR1 is not an essential gene, Iwr1-independent pathway(s) for the nuclear import of Pol II must exist. In this paper, we investigate the transport into the nucleus of several large and small Pol II subunits in the mutants of genes involved in Pol II biogenesis. We also analyse subcellular localization in the presence of drugs that can potentially affect Pol II nuclear import. Our results show differences in the cellular distribution between large and small subunits when Pol II biogenesis was impaired. Our data suggest that, in addition to the fully assembled holoenzyme, Pol II subunits can be imported to the nucleus, either independently or as partial assemblies, through different pathways, including passive diffusion for the small subunits.


Assuntos
Núcleo Celular/enzimologia , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética
12.
Mol Cell Biol ; 33(9): 1756-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23438601

RESUMO

The assembly and nuclear transport of RNA polymerase II (RNA pol II) are processes that require the participation of many auxiliary factors. In a yeast genetic screen, we identified a previously uncharacterized gene, YMR185w (renamed RTP1), which encodes a protein required for the nuclear import of RNA pol II. Using protein affinity purification coupled to mass spectrometry, we identified interactions between Rtp1p and members of the R2TP complex. Rtp1p also interacts, to a different extent, with several RNA pol II subunits. The pattern of interactions is compatible with a role for Rtp1p as an assembly factor that participates in the formation of the Rpb2/Rpb3 subassembly complex and its binding to the Rpb1p-containing subcomplex. Besides, Rtp1p has a molecular architecture characteristic of karyopherins, composed of HEAT repeats, and is able to interact with phenylalanine-glycine-containing nucleoporins. Our results define Rtp1p as a new component of the RNA pol II biogenesis machinery that plays roles in subunit assembly and likely in transport through the nuclear pore complex.


Assuntos
Carioferinas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Carioferinas/análise , Carioferinas/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , RNA Polimerase II/análise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
13.
BMC Genet ; 13: 80, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22963203

RESUMO

BACKGROUND: The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. RESULTS: We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC) formation. CONCLUSIONS: Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.


Assuntos
Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Alelos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Mutação , Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
14.
J Biol Chem ; 284(42): 28958-67, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19679657

RESUMO

RNA polymerase II (RNA pol II) is a multisubunit enzyme that requires many auxiliary factors for its activity. Over the years, these factors have been identified using both biochemical and genetic approaches. Recently, the systematic characterization of protein complexes by tandem affinity purification and mass spectroscopy has allowed the identification of new components of well established complexes, including the RNA pol II holoenzyme. Using this approach, a novel and highly conserved factor, Iwr1p, that physically interacts with most of the RNA pol II subunits has been described in yeast. Here we show that Iwr1p genetically interacts with components of the basal transcription machinery and plays a role in both basal and regulated transcription. We report that mutation of the IWR1 gene is able to bypass the otherwise essential requirement for the transcriptional regulator negative cofactor 2, which occurs with different components of the basal transcription machinery, including TFIIA and subunits of the mediator complex. Deletion of the IWR1 gene leads to an altered expression of specific genes, including phosphate-responsive genes and SUC2. Our results show that Iwr1p is a nucleocytoplasmic shuttling protein and suggest that Iwr1p acts early in the formation of the pre-initiation complex by mediating the interaction of certain activators with the basal transcription apparatus.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica , RNA Polimerase II/genética , RNA Polimerase II/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Cinética , Microscopia de Fluorescência/métodos , Modelos Genéticos , Mutação , Fosfatos/química , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , beta-Frutofuranosidase/metabolismo
15.
Mol Genet Genomics ; 281(1): 125-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19034519

RESUMO

The Mex67p protein, together with Mtr2p, functions as the mRNA export receptor in Saccharomyces cerevisiae by interacting with both mRNA and nuclear pore complexes. To identify genes that interact functionally with MEX67, we used transposon insertion to search for mutations that suppressed the temperature-sensitive mex67-5 allele. Four suppressors are described here. The screen revealed that mutant Mex67-5p, but not wild-type Mex67p, is a target of the nuclear protein quality control mediated by San1p, a ubiquitin-protein ligase that participates in degradation of aberrant chromatin-associated proteins. Our finding that overexpression of the SPT6 gene alleviates the growth defects of the mex67-5 strain, together with the impairment of poly(A)(+) RNA export caused by depletion of Spt6p or the related protein Iws1p/Spn1p, supports the mechanism proposed in mammalian cells for Spt6-mediated co-transcriptional loading of mRNA export factors during transcription elongation. Finally, our results also uncovered genetic connections between Mex67p and the poly(A) nuclease complex and with components of chromatin boundary elements.


Assuntos
Genes Fúngicos , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Sequência de Bases , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Expressão Gênica , Chaperonas de Histonas , Modelos Biológicos , Mutagênese Insercional , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Plasmídeos/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Elongação da Transcrição , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Genetics ; 176(1): 125-38, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17339209

RESUMO

Negative cofactor 2 (NC2) has been described as an essential and evolutionarily conserved transcriptional repressor, although in vitro and in vivo experiments suggest that it can function as both a positive and a negative effector of transcription. NC2 operates by interacting with the core promoter and components of the basal transcription machinery, like the TATA-binding protein (TBP). In this work, we have isolated mutants that suppress the growth defect caused by the depletion of NC2. We have identified mutations affecting components of three different complexes involved in the control of basal transcription: the mediator, TFIIH, and RNA pol II itself. Mutations in RNA pol II include both overexpression of truncated forms of the two largest subunits (Rpb1 and Rpb2) and reduced levels of these proteins. Suppression of NC2 depletion was also observed by reducing the amounts of the mediator essential components Nut2 and Med7, as well as by deleting any of the nonessential mediator components, except Med2, Med3, and Gal11 subunits. Interestingly, the Med2/Med3/Gal11 triad forms a submodule within the mediator tail. Our results support the existence of different components within the basic transcription complexes that antagonistically interact with the NC2 repressor and suggest that the correct balance between the activities of specific positive and negative components is essential for cell growth.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adenosina Trifosfatases , Alelos , DNA Helicases/deficiência , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Fosfoproteínas/deficiência , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/deficiência , Transativadores/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/deficiência
17.
J Biol Chem ; 280(10): 9691-7, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15619606

RESUMO

Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directly to the C-terminal part of Zds1p. In addition, ZDS1 interacted genetically with mutant alleles of genes encoding key factors in mRNA export, including DBP5 and MEX67. Furthermore, deletion of ZDS1 or of both ZDS1 and the closely related ZDS2 exacerbated the poly(A)+ export defects shown by dbp5-2 and mex67-5 mutants. We proposed that Zds1p associates with the complex formed by Dbp5p, Gfd1p, and nucleoporins at the cytosolic fibrils of the nuclear pore complex and is required for optimal mRNA export.


Assuntos
RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Bases , Citosol/metabolismo , Primers do DNA , Genoma Fúngico , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/genética
18.
FEMS Yeast Res ; 4(3): 329-38, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14654438

RESUMO

We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-type copy was still present, suggesting that the level of phosphoribosylanthranylate isomerase activity, resulting from a single copy of TRP1, is too low to sustain growth. Accordingly, a high reversion frequency of the Trp(-) phenotype, through gene conversion, was found in cells of the mutant strain. Nevertheless, this was not a drawback for its use as a recipient strain of heterologous genes. Indeed, YEpACT-X24 transformants were stable after 25 generations and expressed and secreted high levels of active recombinant xylanase. These data indicate that the new Trp(-) strain can be used to generate a stable recombinant yeast that fulfils all the requirements and market criteria for commercial utilisation.


Assuntos
Aldose-Cetose Isomerases , Resistência Microbiana a Medicamentos/genética , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transformação Genética , Biotecnologia , Tecnologia de Alimentos , Genes Fúngicos , Plasmídeos/genética , Saccharomyces cerevisiae/efeitos dos fármacos
19.
Mol Biol Cell ; 14(4): 1664-76, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12686617

RESUMO

The yeast DEAD-box protein Dbp5p/Rat8p is an essential factor for mRNA export and shuttles between the nucleus and the cytoplasm. It is concentrated at the cytoplasmic fibrils of the nuclear pore complex where it interacts with several nucleoporins. On the basis of this localization, it has been suggested that it might participate in a terminal step of RNA export, the release from the mRNA of proteins that accompany the mRNA during translocation through nuclear pores. In this report, we present evidence linking Dbp5p to transcription. Two different screens identified genetic interactions between DBP5 and genes involved in early transcription events, initiation and promoter clearance. Mutations of transcription proteins expected to impair transcription act as suppressors of dbp5 mutants, whereas those that may act to increase transcription are synthetically lethal with dbp5 mutations. We also show that growth and mRNA export in dbp5 mutant strains are dependent on the carboxy-terminal domain of the RNA pol II largest subunit. Finally, we show that Dbp5p associates physically with components of transcription factor IIH. Because these interactions affect not only growth but also mRNA export, they are likely to reflect a functional relationship between Dbp5p and the transcription machinery. Together, our results suggest a nuclear role for Dbp5 during the early steps of transcription.


Assuntos
Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Transporte Ativo do Núcleo Celular , RNA Helicases DEAD-box , Genes Fúngicos , Genes Supressores , Mutação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/química , Transcrição Gênica
20.
J Biol Chem ; 277(38): 35650-6, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12093809

RESUMO

The subcellular localization of Msn2, a transcriptional activator of STRE (stress response element)-regulated genes, is modulated by carbon source availability. In cells growing in glucose, Msn2 is located mainly in the cytosol, whereas in carbon source-starved cells, Msn2 is located largely inside the nucleus. However, in cells lacking Reg1 (the regulatory subunit of the Reg1/Glc7 protein phosphatase complex), the regulation of subcellular distribution is absent, Msn2 being constitutively present in the cytosol. The localization defect in these mutants is specific for carbon starvation stress, and it is because of the presence of an abnormally active Snf1 protein kinase that inhibits the nuclear localization of Msn2 upon carbon starvation. Active Snf1 kinase is also able to avoid the effects of rapamycin, a drug that by inhibiting the TOR kinase pathway leads to a nuclear localization of Msn2 in wild type cells. Therefore, active Snf1 and the TOR kinase pathway may affect similar cytosolic steps in the regulation of the subcellular localization of Msn2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/metabolismo , Frações Subcelulares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Carbono/metabolismo , Meios de Cultura , Primers do DNA , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...