Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23332, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857800

RESUMO

Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.

2.
Sci Rep ; 10(1): 13226, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764583

RESUMO

Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator [Formula: see text] and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced ([Formula: see text]) gaps at the DP in the ARPES dispersions, which remain open above the Neél temperature ([Formula: see text]). We propose that the gap above [Formula: see text] remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.

3.
Nature ; 576(7787): 416-422, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31853084

RESUMO

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

4.
Sci Rep ; 9(1): 4813, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886190

RESUMO

A new kind of magnetically-doped antiferromagnetic (AFM) topological insulators (TIs) with stoichiometry Bi1.09Gd0.06Sb0.85Te3 has been studied by angle-resolved photoemission spectroscopy (ARPES), superconducting magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD) with analysis of its electronic structure and surface-derived magnetic properties at different temperatures. This TI is characterized by the location of the Dirac gap at the Fermi level (EF) and a bulk AFM coupling below the Neel temperature (4-8 K). At temperatures higher than the bulk AFM/PM transition, a surface magnetic layer is proposed to develop, where the coupling between the magnetic moments located at magnetic impurities (Gd) is mediated by the Topological Surface State (TSS) via surface Dirac-fermion-mediated magnetic coupling. This hypothesis is supported by a gap opening at the Dirac point (DP) indicated by the surface-sensitive ARPES, a weak hysteresis loop measured by SQUID at temperatures between 30 and 100 K, XMCD measurements demonstrating a surface magnetic moment at 70 K and a temperature dependence of the electrical resistance exhibiting a mid-gap semiconducting behavior up to temperatures of 100-130 K, which correlates with the temperature dependence of the surface magnetization and confirms the conclusion that only TSS are located at the EF. The increase of the TSS's spectral weight during resonant ARPES at a photon energy corresponding to the Gd 4d-4f edge support the hypothesis of a magnetic coupling between the Gd ions via the TSS and corresponding magnetic moment transfer at elevated temperatures. Finally, the observed out-of-plane and in-plane magnetization induced by synchrotron radiation (SR) due to non-equal depopulation of the TSS with opposite momentum, as seen through change in the Dirac gap value and the k∥-shift of the Dirac cone (DC) states, can be an indicator of the modification of the surface magnetic coupling mediated by the TSS.

5.
Sci Rep ; 8(1): 6544, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695801

RESUMO

Effect of magnetization generated by synchrotron or laser radiation in magnetically-doped and pristine topological insulators (TIs) is presented and analyzed using angle-resolved photoemission spectroscopy. It was found that non-equal photoexcitation of the Dirac cone (DC) states with opposite momenta and spin orientation indicated by the asymmetry in photoemission intensity of the DC states is accompanied by the k||-shift of the DC states relative to the non-spin-polarized conduction band states located at k|| = 0. We relate the observed k||-shift to the induced surface in-plane magnetic field and corresponding magnetization due to the spin accumulation. The direction of the DC k||-shift and its value are changed with photon energy in correlation with variation of the sign and magnitude of the DC states intensity asymmetry. The theoretical estimations describe well the effect and predict the DC k||-shift values which corroborate the experimental observations. This finding opens new perspectives for effective local magnetization manipulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...