Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(20): 168745, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147126

RESUMO

Argonaute nucleases use small nucleic acid guides to recognize and degrade complementary nucleic acid targets. Most prokaryotic Argonautes (pAgos) recognize DNA targets and may play a role in cell immunity against invader genetic elements. We have recently described two related groups of pAgo nucleases that have distinct specificity for DNA guides and RNA targets (DNA > RNA pAgos). Here, we describe additional pAgos from the same clades of the pAgo tree and demonstrate that they have the same unusual nucleic acid specificity. The two groups of DNA > RNA pAgos have non-standard guide-binding pockets in the MID domain and differ in the register of guide DNA binding and target cleavage. In contrast to other pAgos, which coordinate the 5'-end of the guide molecule by their C-terminal carboxyl, DNA > RNA pAgos have an extended C-terminus located away from the MID pocket. We show that modifications of the C-terminus do not affect guide DNA binding, but inhibit cleavage of complementary and mismatched RNA targets by some DNA > RNA pAgos. Our data suggest that the unique C-terminus found in DNA > RNA pAgos can modulate their catalytic properties and can be used as a target for pAgo modifications.


Assuntos
Proteínas Argonautas , DNA , RNA , RNA/metabolismo , DNA/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/genética , Sítios de Ligação , Ligação Proteica , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Modelos Moleculares
2.
DNA Repair (Amst) ; 142: 103741, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153403

RESUMO

PrimPol is a human DNA primase involved in DNA damage tolerance pathways by restarting DNA replication downstream of DNA lesions and non-canonical DNA structures. Activity and affinity to DNA relays on the interaction of PrimPol with replication protein A (RPA). In this work, we report that PrimPol has an intrinsic ability to copy DNA hairpins with a stem length of 5-9 base pairs (bp) but shows pronounced pausing of DNA synthesis. RPA greatly stimulates DNA synthesis across inverted DNA repeats by PrimPol. Moreover, deletion of the C-terminal RPA binding motif (RBM) facilitates DNA hairpin bypass and makes it independent of RPA. This work supports the idea that RBM is a negative regulator of PrimPol and its interaction with RPA is required to achieve the fully active state.


Assuntos
DNA Primase , Replicação do DNA , DNA , Humanos , DNA Primase/metabolismo , DNA Primase/química , DNA Primase/genética , DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/química , Proteína de Replicação A/metabolismo , Conformação de Ácido Nucleico , DNA Polimerase Dirigida por DNA/metabolismo , Sequências Repetidas Invertidas , Ligação Proteica
3.
Nucleic Acids Res ; 52(10): 5895-5911, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716875

RESUMO

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.


Assuntos
Alteromonas , Proteínas Argonautas , DNA Viral , RNA Guia de Sistemas CRISPR-Cas , Ribonucleases , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ribonucleases/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Alteromonas/enzimologia , Alteromonas/virologia , DNA Viral/metabolismo , Bacteriófagos/fisiologia
4.
Nat Microbiol ; 9(5): 1368-1381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622379

RESUMO

Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.


Assuntos
Proteínas Argonautas , Proteínas de Bactérias , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Desoxirribonucleases/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/química , Plasmídeos/genética , Plasmídeos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , DNA/metabolismo , DNA/genética
5.
Biochimie ; 220: 39-47, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38128776

RESUMO

Many prokaryotic Argonaute (pAgo) proteins act as programmable nucleases that use small guide DNAs for recognition and cleavage of complementary target DNA. Recent studies suggested that pAgos participate in cell defense against invader DNA and may also be involved in other genetic processes, including DNA replication and repair. The ability of pAgos to recognize specific targets potentially make them an invaluable tool for DNA manipulations. Here, we demonstrate that DNA-guided DNA-targeting pAgo nucleases from three bacterial species, DloAgo from Dorea longicatena, CbAgo from Clostridium butyricum and KmAgo from Kurthia massiliensis, can sense site-specific modifications in the target DNA, including 8-oxoguanine, thymine glycol, ethenoadenine and pyrimidine dimers. The effects of DNA modifications on the activity of pAgos strongly depend on their positions relative to the site of cleavage and are comparable to or exceed the effects of guide-target mismatches at corresponding positions. For all tested pAgos, the strongest effects are observed when DNA lesions are located at the cleavage position. The results demonstrate that DNA cleavage by pAgos is strongly affected by DNA modifications, thus making possible their use as sensors of DNA damage.


Assuntos
Proteínas Argonautas , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , DNA/metabolismo , Dano ao DNA , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Clostridium butyricum/metabolismo , Clostridium butyricum/genética , Timina/metabolismo , Timina/química , Timina/análogos & derivados
6.
Nucleic Acids Res ; 51(10): 5106-5124, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094066

RESUMO

Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA. In vitro, the analyzed proteins use small guide DNAs for precise cleavage of single-stranded DNA at a wide range of temperatures. Upon their expression in Escherichia coli, all five pAgos are loaded with small DNAs preferentially produced from plasmids and chromosomal regions of replication termination. One of the tested pAgos, EmaAgo from Exiguobacterium marinum, can induce DNA interference between homologous sequences resulting in targeted processing of multicopy plasmid and genomic elements. EmaAgo also protects bacteria from bacteriophage infection, by loading phage-derived guide DNAs and decreasing phage DNA content and phage titers. Thus, the ability of pAgos to target multicopy elements may be crucial for their protective function. The wide spectrum of pAgo activities suggests that they may have diverse functions in vivo and paves the way for their use in biotechnology.


Assuntos
Proteínas Argonautas , Bactérias , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bactérias/genética , DNA/metabolismo , Células Procarióticas/metabolismo , Plasmídeos/genética , Eucariotos/genética , Endonucleases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
7.
Nucleic Acids Res ; 51(8): 4086-4099, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987855

RESUMO

Prokaryotic Argonautes (pAgos) are programmable nucleases involved in cell defense against invading DNA. In vitro, pAgos can bind small single-stranded guide DNAs to recognize and cleave complementary DNA. In vivo, pAgos preferentially target plasmids, phages and multicopy genetic elements. Here, we show that CbAgo nuclease from Clostridium butyricum can be used for genomic DNA engineering in bacteria. We demonstrate that CbAgo loaded with plasmid-derived guide DNAs can recognize and cleave homologous chromosomal loci, and define the minimal length of homology required for this targeting. Cleavage of plasmid DNA at an engineered site of the I-SceI meganuclease increases guide DNA loading into CbAgo and enhances processing of homologous chromosomal loci. Analysis of guide DNA loading into CbAgo also reveals off-target sites of I-SceI in the Escherichia coli genome, demonstrating that pAgos can be used for highly sensitive detection of double-stranded breaks in genomic DNA. Finally, we show that CbAgo-dependent targeting of genomic loci with plasmid-derived guide DNAs promotes homologous recombination between plasmid and chromosomal DNA, depending on the catalytic activity of CbAgo. Specific targeting of plasmids with Argonautes can be used to integrate plasmid-encoded sequences into the chromosome thus enabling genome editing.


Assuntos
DNA , Edição de Genes , Plasmídeos/genética , DNA/metabolismo , Bactérias/genética , DNA de Cadeia Simples , Endonucleases/metabolismo
8.
Biochimie ; 209: 142-149, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804511

RESUMO

Prokaryotic Argonaute (pAgo) proteins are programmable nucleases with great promise in genetic engineering and biotechnology. Previous studies identified several DNA-targeting pAgo nucleases from mesophilic and thermophilic prokaryotic species that are active in various temperature ranges. However, the effects of temperature on the specificity of target recognition and cleavage by pAgos have not been studied. Here, we describe a thermostable pAgo nuclease from the thermophilic bacterium Thermobrachium celere, TceAgo. We show that TceAgo preferentially uses 5'-phosphorylated small DNA guides and can perform specific cleavage of both single-stranded and double-stranded DNA substrates in a wide range of temperatures. Single-nucleotide mismatches between guide and target molecules differently change the reaction efficiency depending on the mismatch position, with the fidelity of target recognition greatly increased at elevated temperatures. Thus, TceAgo can serve as a tool to allow specific detection and cleavage of DNA targets in a temperature-dependent manner. The results demonstrate that the specificity of programmable nucleases can be strongly affected by the reaction conditions, which should be taken into account when using these nucleases in various in vitro and in vivo applications.


Assuntos
DNA , Células Procarióticas , Temperatura , DNA/metabolismo , Bactérias/metabolismo , Desoxirribonucleases/metabolismo
9.
Biochimie ; 206: 81-88, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36252889

RESUMO

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , COVID-19/genética , Proteínas não Estruturais Virais/química , Antivirais/química
10.
FEBS J ; 290(1): 80-92, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916766

RESUMO

RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3'-end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA-dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post-transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6-methyladenosine, 5-methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3-methyluridine and 1-methylguanosine) or immediately after it (2'-O-methylation). The results demonstrate that the activity of SARS-CoV-2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.


Assuntos
RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Nucleotídeos , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/enzimologia , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA