Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 53(21): 11794-801, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25334034

RESUMO

A novel quadruple perovskite oxide CeCu3Fe4O12 has been synthesized under high-pressure and high-temperature conditions of 15 GPa and 1473 K. (57)Fe Mössbauer spectroscopy displays a charge disproportionation transition of 4Fe(3.5+) → 3Fe(3+) + Fe(5+) below ∼270 K, whereas hard X-ray photoemission and soft X-ray absorption spectroscopy measurements confirm that the Ce and Cu valences are retained at approximately +4 and +2, respectively, over the entire temperature range measured. Electron and X-ray diffraction studies reveal that the body-centered cubic symmetry (space group Im3̅, No. 204) is retained at temperatures as low as 100 K, indicating the absence of any types of charge-ordering in the charge-disproportionated CeCu3Fe4O12 phase. The magnetic susceptibility and neutron powder diffraction data illustrate that the antiferromagnetic ordering of Fe ions is predominant in the charge-disproportionated CeCu3Fe4O12 phase. These findings suggest that CeCu3Fe4O12 undergoes a new type of electronic phase in the ACu3Fe4O12 series and that the melting of the charge-ordering in CeCu3Fe4O12 is caused by the substantial decrease in the Fe valence and the resulting large deviation from the ideal abundance ratio of Fe(3+):Fe(5+) = 1:1 for rock-salt-type charge-ordering.


Assuntos
Cério/química , Cobre/química , Congelamento , Compostos de Ferro/química , Óxidos/química , Compostos de Ferro/síntese química , Modelos Moleculares , Estrutura Molecular , Óxidos/síntese química
2.
Inorg Chem ; 53(19): 10563-9, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25211655

RESUMO

The valence states of a negative thermal expansion material, SrCu3Fe4O12, are investigated by X-ray absorption and (57)Fe Mössbauer spectroscopy. Spectroscopic analyses reveal that the appropriate ionic model of this compound at room temperature is Sr(2+)Cu(~2.4+)3Fe(~3.7+)4O12. The valence states continuously transform to Sr(2+)Cu(~2.8+)3Fe(~3.4+)4O12 upon cooling to ~200 K, followed by a charge disproportionation transition into the Sr(2+)Cu(~2.8+)3Fe(3+)(~3.2)Fe(5+)(~0.8)O12 valence state at ~4 K. These observations have established the charge-transfer mechanism in this compound, and the electronic phase transitions in SrCu3Fe4O12 can be distinguished from the first-order charge-transfer phase transitions (3Cu(2+) + 4Fe(3.75+) → 3Cu(3+) + 4Fe(3+)) in Ln(3+)Cu(2+)3Fe(3.75+)4O12 (Ln = trivalent lanthanide ions).

3.
Inorg Chem ; 52(23): 13751-61, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24224928

RESUMO

Unusual electronic phase transitions in the A-site ordered perovskites LnCu3Fe4O12 (Ln: trivalent lanthanide ion) are investigated. All LnCu3Fe4O12 compounds are in identical valence states of Ln(3+)Cu(2+)3Fe(3.75+)4O12 at high temperature. LnCu3Fe4O12 with larger Ln ions (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) show an intersite charge transfer transition (3Cu(2+) + 4Fe(3.75+) → 3Cu(3+) + 4Fe(3+)) in which the transition temperature decreases from 360 to 240 K with decreasing Ln ion size. In contrast, LnCu3Fe4O12 with smaller Ln ions (Ln = Dy, Ho, Er, Tm Yb, Lu) transform into a charge-disproportionated (8Fe(3.75+) → 5Fe(3+) + 3Fe(5+)) and charge-ordered phase below ∼250-260 K. The former series exhibits metal-to-insulator, antiferromagnetic, and isostructural volume expansion transitions simultaneously with intersite charge transfer. The latter shows metal-to-semiconductor, ferrimagnetic, and structural phase transitions simultaneously with charge disproportionation. Bond valence calculation reveals that the metal-oxygen bond strains in these compounds are classified into two types: overbonding or compression stress (underbonding or tensile stress) in the Ln-O (Fe-O) bond is dominant in the former series, while the opposite stresses or bond strains are found in the latter. Intersite charge transfer transition temperatures are strongly dependent upon the global instability indices that represent the structural instability calculated from the bond valence sum, whereas the charge disproportionation occurs at almost identical temperatures, regardless of the magnitude of structural instability. These findings provide a new aspect of the structure-property relationship in transition metal oxides and enable precise control of electronic states by bond strains.


Assuntos
Compostos de Cálcio/química , Compostos de Ferro/química , Elementos da Série dos Lantanídeos/química , Óxidos/química , Titânio/química , Temperatura Baixa , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Transição de Fase
4.
J Am Chem Soc ; 135(16): 6100-6, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23560478

RESUMO

A novel iron perovskite YCu3Fe4O12 was synthesized under high pressure and high temperature of 15 GPa and 1273 K. Synchrotron X-ray and electron diffraction measurements have demonstrated that this compound crystallizes in the cubic AA'3B4O12-type perovskite structure (space group Im3, No. 204) with a lattice constant of a = 7.30764(10) Šat room temperature. YCu3Fe4O12 exhibits a charge disproportionation of 8Fe(3.75+) → 3Fe(5+) + 5Fe(3+), a ferrimagnetic ordering, and a metal-semiconductor-like transition simultaneously at 250 K, unlike the known isoelectronic compound LaCu3Fe4O12 that currently shows an intersite charge transfer of 3Cu(2+) + 4Fe(3.75+) → 3Cu(3+) + 4Fe(3+), an antiferromagnetic ordering, and a metal-insulator transition at 393 K. This finding suggests that intersite charge transfer is not the only way of relieving the instability of the Fe(3.75+) state in the A(3+)Cu(2+)3Fe(3.75+)4O12 perovskites. Crystal structure analysis reveals that bond strain, rather than the charge account of the A-site alone, which is enhanced by large A(3+) ions, play an important role in determining which of intersite charge transfer or charge disproportionation is practical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...