Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36548783

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare life-threatening febrile illness that occurs in women using intravaginal menstrual protection. It is caused by toxic shock syndrome toxin 1 (TSST-1) produced by Staphylococcus aureus, triggering a sudden onset of rash and hypotension, subsequently leading to multiple organ failure. Detecting TSST-1 and S. aureus virulence factors in menstrual fluid could accelerate the diagnosis and improve therapeutic management of mTSS. However, menstrual fluid is a highly complex matrix, making detection of bacterial toxins challenging. Here, we present a mass-spectrometry-based proteomics workflow for the targeted, quantitative analysis of four S. aureus superantigenic toxins in menstrual fluids (TSST-1, SEA, SEC, and SED). This method was applied to characterize toxin levels in menstrual fluids collected from patients with mTSS and healthy women. Toxins were detectable in samples from patients with mTSS and one healthy donor at concentrations ranging from 0 to 0.46 µg/mL for TSST-1, and 0 to 1.07 µg/mL for SEC. SEA and SED were never detected in clinical specimens, even though many S. aureus strains were positive for the corresponding genes. The method presented here could be used to explore toxin production in vivo in users of intravaginal devices to improve the diagnosis, understanding, and prevention of mTSS.


Assuntos
Choque Séptico , Infecções Estafilocócicas , Humanos , Feminino , Choque Séptico/microbiologia , Staphylococcus aureus/genética , Proteômica , Enterotoxinas , Superantígenos/genética , Exotoxinas , Insuficiência de Múltiplos Órgãos , Infecções Estafilocócicas/microbiologia
2.
J Clin Med ; 9(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560044

RESUMO

A reliable diagnostic assay is crucial to early detect new COVID-19 cases and limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Since the onset of the COVID-19 pandemic, the World Health Organization has published several diagnostic molecular approaches developed by referral laboratories, including Charité (Germany), HKU (Hong Kong), China CDC (China), US CDC (United States), and Institut Pasteur, Paris (France). We aimed to compare the sensitivity and specificity of these different RT-PCR assays using SARS-CoV-2 cell culture supernatants and clinical respiratory samples. Overall, the different RT-PCR assays performed well for SARS-CoV-2 detection and were all specific except the N Charité (Germany), and N2 US CDC (United States) assays. RdRp Institut Pasteur (IP2, IP4), N China CDC, and N1 US CDC were found to be the most sensitive assays. The data presented herein are of prime importance to facilitate the equipment choice of diagnostic laboratories, as well as for the development of marketed tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...