Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461895

RESUMO

Creatine plays a crucial role in developing the brain, so much that its genetic deficiency results in mental dysfunction and cognitive impairments. Moreover, creatine supplementation is currently under investigation as a preventive measure to protect the fetus against oxidative stress during difficult pregnancies. Although creatine use is considered safe, posing minimal risk to clinical health, we found an alteration in morpho-functional maturation of neurons when male rats were exposed to creatine loads during brain development. In particular, increased excitability and enhanced long-term potentiation (LTP) were observed in the hippocampal pyramidal neurons of weaning pups. Since these effects were observed a long time after creatine treatment had been terminated, long-lasting modifications persisting into adulthood were hypothesized. Such modifications were investigated in the present study using morphological, electrophysiological, and calcium imaging techniques applied to hippocampal Cornu Ammonis 1 (CA1) neurons of adult rats born from dams supplemented with creatine. When compared to age-matched controls, the treated adult offspring were found to retain enhanced neuron excitability and an improved LTP, the best-documented neuronal substrate for memory formation. While translating data from rats to humans does have limitations, our findings suggest that prenatal creatine supplementation could have positive effects on adult cognitive abilities.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Creatina/administração & dosagem , Suplementos Nutricionais , Plasticidade Neuronal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Células Piramidais/efeitos dos fármacos , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cognição/efeitos dos fármacos , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Memória/efeitos dos fármacos , Gravidez , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
2.
Int J Sports Med ; 40(8): 511-518, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31288290

RESUMO

External counterpulsation (ECP), an electrocardiogram-led sequential compression of lower limbs, has been recently proposed for sports recovery, but research is scant. This study examined the effects of an ECP session upon neuromuscular function (vertical jump and torque/velocity characteristics), biochemical responses (creatine kinase, cortisol, testosterone, alpha-amylase and immunoglobulin-A), and muscle soreness (visual analogue scale) following high-intensity exercise. Twenty-one male team sport athletes (age: 21.6±3.4 yrs; height: 182.7±7.3 cm; body mass: 82.7±9.3 kg) recovered from the fatiguing exercise using either ECP or rest. Data collection was conducted at three separate time points: upon arrival (Pre), post-recovery (Post), and 24 h post-recovery (24hPost). Significant main effects for time were observed for increased torque/velocity slope and for decreased isometric extension peak torque (p<0.001). Significant main effects for time were observed for increased creatine kinase, testosterone, alpha-amylase, and muscle soreness (all p<0.001). Significant interaction effects were observed at post-testing following ECP: Cortisol release and the related decline in testosterone/cortisol ratio were attenuated, and immunoglobulin-A was increased following ECP in comparison to the control (all p<0.05). Following high-intensity exercise, ECP has potentially beneficial effects upon biomarkers of recovery, without affecting the neuromuscular function.


Assuntos
Contrapulsação , Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Mialgia/fisiopatologia , Esportes/fisiologia , Biomarcadores/análise , Creatina Quinase/sangue , Humanos , Hidrocortisona/sangue , Imunoglobulina A/análise , Masculino , Saliva/química , Testosterona/sangue , Torque , Adulto Jovem , alfa-Amilases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA