Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 173: 372-382, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28732879

RESUMO

Three types of organo-mineral composites have been probed as adsorbents for the removal of Ni(II) ions from aqueous solution. Native Aerosil 200 silica particles have been encapsulated with carboxymethylchitosan (CM-CS) providing SiO2+CM-CS, surface-silanized silica particles SiO2NH2+CM-CS were obtained by treatment with APTES and subsequent encapsulation by CM-CS. Alternatively, surface-carboxylated Aerosil 200 was coated by CM-CS affording SiO2CO2H+CM-CS. The materials have been characterized by various techniques. The effects of counter ions (Cl-, Br-, CH3COO-, NO3- and SO42-), pH and initial Ni(II) concentration on the adsorption capacities have been systematically investigated. The maximum adsorption capacity qm of CM-CS-coated silica was determined using the Langmuir adsorption isotherm. For SiO2CO2H+CM-CS, SiO2+CM-CS and SiO2NH2+CM-CS, they decrease at pH 7 in the order 256mg/g>140mg/g>105mg/g. The adsorption kinetic fits well with a pseudo-second order model. These carbohydrate-derived biosorbents are excellent adsorbents with capacities superior to most other adsorbents reported in the literature.

2.
J Colloid Interface Sci ; 444: 81-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25585291

RESUMO

Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling.

3.
Colloids Surf B Biointerfaces ; 93: 1-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285680

RESUMO

Two new silica-based composites were prepared as adsorbents for the capture of Ni(II) ions. The first strategy consists in coating chitosan on colloidal fumed silica after acidic treatment yielding the composite SiO(2)+CS. The second route involves in a first step surface condensation of triethoxysilylbutyronitrile, followed by acidic hydrolysis of the surface-bound nitrile groups affording silica particles covered by carboxylic group. In a third step, chitosan has been grafted on the surface-bound C(=O)OH groups yielding the composite SiO(2)(CO(2)H)+CS. The novel hybrid materials were characterized by IR spectroscopy, scanning electron and AFM microscopy, and zeta potential measurements. Batch experiments were conducted to study the sorption performance of these composites for Ni(II) removal from aqueous NiCl(2) solution at different pH. Both Langmuir, Freundlich, and Temkin isotherm models provide good fits with the experimental data. It was shown that these low-cost materials present a promising capacity to adsorb Ni(II) ions. At pH 7, the maximum adsorption capacity q(max)of Ni(II) on the adsorbent, is found to be 182 mg g(-1) for SiO(2)+CS, and 210 mg g(-1) for SiO(2)(CO(2)H)+CS.


Assuntos
Quitosana/química , Níquel/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cátions Bivalentes , Coloides/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Soluções , Espectrofotometria Infravermelho , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...