Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282551

RESUMO

Understanding the serological responses to COVID-19 vaccination in children with history of MIS-C could inform vaccination recommendations. We prospectively enrolled five children hospitalized with MIS-C and measured SARS-CoV-2 binding IgG antibodies to spike protein variants longitudinally pre- and post-Pfizer-BioNTech BNT162b2 primary series COVID-19 vaccination. We found that SARS-CoV-2 variant cross-reactive IgG antibodies waned following acute MIS-C, but were significantly boosted with vaccination and maintained for at least 3 months. We then compared post-vaccination binding, pseudovirus neutralizing, and functional antibody-dependent cell-mediated cytotoxicity (ADCC) titers to the reference strain (Wuhan-hu-1) and Omicron variant (B.1.1.529) among previously healthy children (n=6) and children with history of MIS-C (n=5) or COVID-19 (n=5). Despite the breadth of binding antibodies elicited by vaccination in all three groups, pseudovirus neutralizing and ADCC titers were reduced to the Omicron variant. Vaccination after MIS-C or COVID-19 (hybrid immunity) conferred advantage in generating pseudovirus neutralizing and functional ADCC antibodies to Omicron.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280395

RESUMO

MIS-C is a severe hyperinflammatory condition with involvement of multiple organs that occurs in children who had COVID-19 infection. Accurate diagnostic tests are needed to guide management and appropriate treatment and to inform clinical trials of experimental drugs and vaccines, yet the diagnosis of MIS-C is highly challenging due to overlapping clinical features with other acute syndromes in hospitalized patients. Here we developed a gene expression-based classifier for MIS-C by RNA-Seq transcriptome profiling and machine learning based analyses of 195 whole blood RNA and 76 plasma cell-free RNA samples from 191 subjects, including 95 MIS-C patients, 66 COVID-19 infected patients with moderately severe to severe disease, and 30 uninfected controls. We divided the group into a training set (70%) and test set (30%). After selection of the top 300 differentially expressed genes in the training set, we simultaneously trained 13 classification models to distinguish patients with MIS-C and COVID-19 from controls using five-fold cross-validation and grid search hyperparameter tuning. The final optimal classifier models had 100% diagnostic accuracy for MIS-C (versus non-MIS-C) and 85% accuracy for severe COVID-19 (versus mild/asymptomatic COVID-19). Orthogonal validation of a random subset of 11 genes from the final models using quantitative RT-PCR confirmed the differential expression and ability to discriminate MIS-C and COVID-19 from controls. These results underscore the utility of a gene expression classifier for diagnosis of MIS-C and severe COVID-19 as specific and objective biomarkers for these conditions.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277336

RESUMO

BackgroundProtection from SARS-CoV-2 vaccines wanes over time and is compounded by emerging variants including Omicron subvariants. This study evaluated safety and immunogenicity of SARS-CoV-2 variant vaccines. MethodsThis phase 2 open-label, randomized trial enrolled healthy adults previously vaccinated with a SARS-CoV-2 primary series and a single boost. Eligible participants were randomized to one of six Moderna COVID19 mRNA vaccine arms (50{micro}g dose): Prototype (mRNA-1273), Omicron BA.1+Beta (1 or 2 doses), Omicron BA.1+Delta, Omicron BA.1 monovalent, and Omicron BA.1+Prototype. Neutralization antibody titers (ID50) were assessed for D614G, Delta, Beta and Omicron BA.1 variants and Omicron BA.2.12.1 and BA.4/BA.5 subvariants 15 days after vaccination. ResultsFrom March 30 to May 6, 2022, 597 participants were randomized and vaccinated. Median age was 53 years, and 20% had a prior SARS-CoV-2 infection. All vaccines were safe and well-tolerated. Day 15 geometric mean titers (GMT) against D614G were similar across arms and ages, and higher with prior infection. For uninfected participants, Day 15 Omicron BA.1 GMTs were similar across Omicron-containing vaccine arms (3724-4561) and higher than Prototype (1,997 [95%CI:1,482-2,692]). The Omicron BA.1 monovalent and Omicron BA.1+Prototype vaccines induced a geometric mean ratio (GMR) to Prototype for Omicron BA.1 of 2.03 (97.5%CI:1.37-3.00) and 1.56 (97.5%CI:1.06-2.31), respectively. A subset of samples from uninfected participants in four arms were also tested in a different laboratory at Day 15 for neutralizing antibody titers to D614G and Omicron subvariants BA.1, BA.2.12.2 and BA.4/BA.5. Omicron BA.4/BA.5 GMTs were approximately one third BA.1 GMTs (Prototype 517 [95%CI:324-826] vs. 1503 [95%CI:949-2381]; Omicron BA.1+Beta 628 [95%CI:367-1,074] vs. 2125 [95%CI:1139-3965]; Omicron BA.1+Delta 765 [95%CI:443-1,322] vs. 2242 [95%CI:1218-4128] and Omicron BA.1+Prototype 635 [95%CI:447-903] vs. 1972 [95%CI:1337-2907). ConclusionsHigher Omicron BA.1 titers were observed with Omicron-containing vaccines compared to Prototype vaccine and titers against Omicron BA.4/BA.5 were lower than against BA.1 for all candidate vaccines. Clinicaltrials.govNCT05289037

4.
- IMPACC group; Al Ozonoff; Joanna Schaenman; Naresh Doni Jayavelu; Carly E. Milliren; Carolyn S. Calfee; Charles B. Cairns; Monica Kraft; Lindsey R. Baden; Albert C. Shaw; Florian Krammer; Harm Van Bakel; Denise Esserman; Shanshan Liu; Ana Fernandez Sesma; Viviana Simon; David A. Hafler; Ruth R. Montgomery; Steven H. Kleinstein; Ofer Levy; Christian Bime; Elias K. Haddad; David J. Erle; Bali Pulendran; Kari C. Nadeau; Mark M. Davis; Catherine L. Hough; William B. Messer; Nelson I. Agudelo Higuita; Jordan P. Metcalf; Mark A. Atkinson; Scott C. Brakenridge; David B. Corry; Farrah Kheradmand; Lauren I. R. Ehrlich; Esther Melamed; Grace A. McComsey; Rafick Sekaly; Joann Diray-Arce; Bjoern Peters; Alison D. Augustine; Elaine F. Reed; Kerry McEnaney; Brenda Barton; Claudia Lentucci; Mehmet Saluvan; Ana C. Chang; Annmarie Hoch; Marisa Albert; Tanzia Shaheen; Alvin Kho; Sanya Thomas; Jing Chen; Maimouna D. Murphy; Mitchell Cooney; Scott Presnell; Leying Guan; Jeremy Gygi; Shrikant Pawar; Anderson Brito; Zain Khalil; James A. Overton; Randi Vita; Kerstin Westendorf; Cole Maguire; Slim Fourati; Ramin Salehi-Rad; Aleksandra Leligdowicz; Michael Matthay; Jonathan Singer; Kirsten N. Kangelaris; Carolyn M. Hendrickson; Matthew F. Krummel; Charles R. Langelier; Prescott G. Woodruff; Debra L. Powell; James N. Kim; Brent Simmons; I.Michael Goonewardene; Cecilia M. Smith; Mark Martens; Jarrod Mosier; Hiroki Kimura; Amy Sherman; Stephen Walsh; Nicolas Issa; Charles Dela Cruz; Shelli Farhadian; Akiko Iwasaki; Albert I. Ko; Evan J. Anderson; Aneesh Mehta; Jonathan E. Sevransky; Sharon Chinthrajah; Neera Ahuja; Angela Rogers; Maja Artandi; Sarah A.R. Siegel; Zhengchun Lu; Douglas A. Drevets; Brent R. Brown; Matthew L. Anderson; Faheem W. Guirgis; Rama V. Thyagarajan; Justin Rousseau; Dennis Wylie; Johanna Busch; Saurin Gandhi; Todd A. Triplett; George Yendewa; Olivia Giddings; Tatyana Vaysman; Bernard Khor; Adeeb Rahman; Daniel Stadlbauer; Jayeeta Dutta; Hui Xie; Seunghee Kim-Schulze; Ana Silvia Gonzalez-Reiche; Adriana van de Guchte; Holden T. Maecker; Keith Farrugia; Zenab Khan; Joanna Schaenman; Elaine F. Reed; Ramin Salehi-Rad; David Elashoff; Jenny Brook; Estefania Ramires-Sanchez; Megan Llamas; Adreanne Rivera; Claudia Perdomo; Dawn C. Ward; Clara E. Magyar; Jennifer Fulcher; Yumiko Abe-Jones; Saurabh Asthana; Alexander Beagle; Sharvari Bhide; Sidney A. Carrillo; Suzanna Chak; Rajani Ghale; Ana Gonzales; Alejandra Jauregui; Norman Jones; Tasha Lea; Deanna Lee; Raphael Lota; Jeff Milush; Viet Nguyen; Logan Pierce; Priya Prasad; Arjun Rao; Bushra Samad; Cole Shaw; Austin Sigman; Pratik Sinha; Alyssa Ward; Andrew - Willmore; Jenny Zhan; Sadeed Rashid; Nicklaus Rodriguez; Kevin Tang; Luz Torres Altamirano; Legna Betancourt; Cindy Curiel; Nicole Sutter; Maria Tercero Paz; Gayelan Tietje-Ulrich; Carolyn Leroux; Jennifer Connors; Mariana Bernui; Michele Kutzler; Carolyn Edwards; Edward Lee; Edward Lin; Brett Croen; Nicholas Semenza; Brandon Rogowski; Nataliya Melnyk; Kyra Woloszczuk; Gina Cusimano; Matthew Bell; Sara Furukawa; Renee McLin; Pamela Marrero; Julie Sheidy; George P. Tegos; Crystal Nagle; Nathan Mege; Kristen Ulring; Vicki Seyfert-Margolis; Michelle Conway; Dave Francisco; Allyson Molzahn; Heidi Erickson; Connie Cathleen Wilson; Ron Schunk; Trina Hughes; Bianca Sierra; Kinga K. Smolen; Michael Desjardins; Simon van Haren; Xhoi Mitre; Jessica Cauley; Xiofang Li; Alexandra Tong; Bethany Evans; Christina Montesano; Jose Humberto Licona; Jonathan Krauss; Jun Bai Park Chang; Natalie Izaguirre; Omkar Chaudhary; Andreas Coppi; John Fournier; Subhasis Mohanty; M. Catherine Muenker; Allison Nelson; Khadir Raddassi; Michael Rainone; William Ruff; Syim Salahuddin; Wade L. Schulz; Pavithra Vijayakumar; Haowei Wang; Elsio Wunder Jr.; H. Patrick Young; Yujiao Zhao; Miti Saksena; Deena Altman; Erna Kojic; Komal Srivastava; Lily Q. Eaker; Maria Carolina Bermudez; Katherine F. Beach; Levy A. Sominsky; Arman Azad; Juan Manuel Carreno; Gagandeep Singh; Ariel Raskin; Johnstone Tcheou; Dominika Bielak; Hisaaki Kawabata; Lubbertus CF Mulder; Giulio Kleiner; Laurel Bristow; Laila Hussaini; Kieffer Hellmeister; Hady Samaha; Andrew Cheng; Christine Spainhour; Erin M. Scherer; Brandi Johnson; Amer Bechnak; Caroline R. Ciric; Lauren Hewitt; Bernadine Panganiban; Chistopher Huerta; Jacob Usher; Erin Carter; Nina Mcnair; Susan Pereira Ribeiro; Alexandra S. Lee; Evan Do; Andrea Fernandes; Monali Manohar; Thomas Hagan; Catherine Blish; Hena Naz Din; Jonasel Roque; Samuel S. Yang; Amanda E. Brunton; Peter E. Sullivan; Matthew Strnad; Zoe L. Lyski; Felicity J. Coulter; John L. Booth; Lauren A. Sinko; Lyle Moldawer; Brittany Borrensen; Brittney Roth-Manning; Li-Zhen Song; Ebony Nelson; Megan Lewis-Smith; Jacob Smith; Pablo Guaman Tipan; Nadia Siles; Sam Bazzi; Janelle Geltman; Kerin Hurley; Giovanni Gabriele; Scott Sieg; Matthew C. Altman; Patrice M. Becker; Nadine Rouphael.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273396

RESUMO

BackgroundBetter understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. MethodsImmunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1,164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FindingsThe median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age [≥] 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63-4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. InterpretationIntegration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FundingNIH RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSWe did a systematic search of the PubMed database from January 1st, 2020 until April 24th, 2022 using the search terms: "hospitalized" AND "SARS-CoV-2" OR "COVID-19" AND "Pro-spective" AND "Antibody" OR "PCR" OR "long term follow up" and applying the following filters: "Multicenter Study" AND "Observational Study". No language restrictions were applied. While clinical, laboratory, and radiographic features associated with severe COVID-19 in hospitalized adults have been described, description of the kinetics of SARS-CoV-2 specific assays available to clinicians (e.g. PCR and binding antibody) and their integration with other variables is scarce for both short and long term follow up. The current literature is comprised of several studies with small sample size, cross-sectional design with laboratory data typically only recorded at a single point in time (e.g., on admission), limited clinical characteristics, variable duration of follow up, single-center setting, retrospective analyses, kinetics of either PCR or antibody testing but not both, and outcomes such as death or, mechanical ventilation that do not allow delineation of variations in clinical course. Added value of this studyIn our large longitudinal multicenter cohort, the description of outcome severity, was not limited to survival versus death, but encompassed a clinical trajectory approach leveraging longitudinal data based on time in hospital, disease severity by ordinal scale based on degree of respiratory illness, and presence or absence of limitations at discharge. Fatal COVID-19 cases had the lowest ratio of antibody to viral load levels over time as compared to non-fatal cases. Integration of PCR cycle threshold and antibody values with demographics, baseline comorbidities, and laboratory/radiographic findings identified additional risk factors for outcome severity over the first 28 days. However, female sex was the only variable associated with persistence of symptoms over time. Persistence of symptoms was not associated with clinical trajectory over the first 28 days, nor with antibody/viral loads from the acute phase. Implications of all the available evidenceThe described calculated ratio (binding IgG/PCR Ct value) is unique compared to other studies, reflecting host pathogen interactions and representing an accessible approach for patient risk stratification. Integration of SARS-CoV-2 viral load and binding antibody kinetics with other laboratory as well as clinical characteristics in hospitalized COVID-19 patients can identify patients likely to have the most severe short-term outcomes, but is not predictive of symptom persistence at one year post-discharge.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276250

RESUMO

Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with acute COVID-19 (n=70) or MIS-C (n=141) across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between these two disease states, with increased heterogeneity and multi-organ involvement in MIS-C encompassing diverse cell types such as endothelial and neuronal Schwann cells. Whole blood RNA profiling reveals upregulation of similar pro-inflammatory signaling pathways in COVID-19 and MIS-C, but also MIS-C specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole blood RNA in paired samples yields different yet complementary signatures for each disease state. Our work provides a systems-level, multi-analyte view of immune responses and tissue damage in COVID-19 and MIS-C and informs the future development of new disease biomarkers.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271788

RESUMO

BackgroundInfluenza virus and SARS-CoV-2 are significant causes of respiratory illness in children. MethodsInfluenza and COVID-19-associated hospitalizations among children <18 years old were analyzed from FluSurv-NET and COVID-NET, two population-based surveillance systems with similar catchment areas and methodology. The annual COVID-19-associated hospitalization rate per 100 000 during the ongoing COVID-19 pandemic (October 1, 2020-September 30, 2021) was compared to influenza-associated hospitalization rates during the 2017-18 through 2019-20 influenza seasons. In-hospital outcomes, including intensive care unit (ICU) admission and death, were compared. ResultsAmong children <18 years old, the COVID-19-associated hospitalization rate (48.2) was higher than influenza-associated hospitalization rates: 2017-18 (33.5), 2018-19 (33.8), and 2019-20 (41.7). The COVID-19-associated hospitalization rate was higher among adolescents 12-17 years old (COVID-19: 59.9; influenza range: 12.2-14.1), but similar or lower among children 5-11 (COVID-19: 25.0; influenza range: 24.3-31.7) and 0-4 (COVID-19: 66.8; influenza range: 70.9-91.5) years old. Among children <18 years old, a higher proportion with COVID-19 required ICU admission compared with influenza (26.4% vs 21.6%; p<0.01). Pediatric deaths were uncommon during both COVID-19- and influenza-associated hospitalizations (0.7% vs 0.5%; p=0.28). ConclusionsIn the setting of extensive mitigation measures during the COVID-19 pandemic, the annual COVID-19-associated hospitalization rate during 2020-2021 was higher among adolescents and similar or lower among children <12 years old compared with influenza during the three seasons before the COVID-19 pandemic. COVID-19 adds substantially to the existing burden of pediatric hospitalizations and severe outcomes caused by influenza and other respiratory viruses. SummaryAnnual hospitalization rates and proportions of hospitalized children experiencing severe outcomes were as high or higher for COVID-19 during October 2020-September 2021 compared with influenza during the three seasons before the COVID-19 pandemic, based on U.S. population-based surveillance data.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473557

RESUMO

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naive vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262356

RESUMO

BackgroundAs of August 21, 2021, >60% of the U.S. population aged [≥]18 years were fully vaccinated with vaccines highly effective in preventing hospitalization due to Coronavirus Disease-2019 (COVID-19). Infection despite full vaccination (vaccine breakthrough) has been reported, but characteristics of those with vaccine breakthrough resulting in hospitalization and relative rates of hospitalization in unvaccinated and vaccinated persons are not well described, including during late June and July 2021 when the highly transmissible Delta variant predominated. MethodsFrom January 1-June 30, 2021, cases defined as adults aged [≥]18 years with laboratory-confirmed Severe Acute Respiratory Coronavirus-2 (SARS-CoV-2) infection were identified from >250 acute care hospitals in the population-based COVID-19-Associated Hospitalization Surveillance Network (COVID-NET). Through chart review for sampled cases, we examine characteristics associated with vaccination breakthrough. From January 24-July 24, 2021, state immunization information system data linked to both >37,000 cases representative cases and the defined surveillance catchment area population were used to compare weekly hospitalization rates in vaccinated and unvaccinated individuals. Unweighted case counts and weighted percentages are presented. ResultsFrom January 1 - June 30, 2021, fully vaccinated cases increased from 1 (0.01%) to 321 (16.1%) per month. Among 4,732 sampled cases, fully vaccinated persons admitted with COVID-19 were older compared with unvaccinated persons (median age 73 years [Interquartile Range (IQR) 65-80] v. 59 years [IQR 48-70]; p<0.001), more likely to have 3 or more underlying medical conditions (201 (70.8%) v. 2,305 (56.1%), respectively; p<0.001) and be residents of long-term care facilities [37 (14.5%) v. 146 (5.5%), respectively; p<0.001]. From January 24 - July 24, 2021, cumulative hospitalization rates were 17 times higher in unvaccinated persons compared with vaccinated persons (423 cases per 100,000 population v. 26 per 100,000 population, respectively); rate ratios were 23, 22 and 13 for those aged 18-49, 50-64, and [≥]65 years respectively. For June 27 - July 24, hospitalization rates were [≥]10 times higher in unvaccinated persons compared with vaccinated persons for all age groups across all weeks. ConclusionPopulation-based hospitalization rates show that unvaccinated adults aged [≥]18 years are 17 times more likely to be hospitalized compared with vaccinated adults. Rates are far higher in unvaccinated persons in all adult age groups, including during a period when the Delta variant was the predominant strain of the SARS-CoV-2 virus. Vaccines continue to play a critical role in preventing serious COVID-19 illness and remain highly effective in preventing COVID-19 hospitalizations.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256344

RESUMO

BackgroundThe effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. ObjectivesWe sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). MethodsGroups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n=14 per group) were analyzed for these same antibodies. ResultsMice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P=0.012), these titers correlated positively with both SARS-CoV-2 binding (r=0.7577, P<0.001) and neutralizing (r=0.6201, P=0.001) antibodies. ConclusionsPrior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255739

RESUMO

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to eight months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255473

RESUMO

BackgroundThe COVID-19 pandemic has caused substantial morbidity and mortality. ObjectivesTo describe monthly demographic and clinical trends among adults hospitalized with COVID-19. DesignPooled cross-sectional. Setting99 counties within 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET). PatientsU.S. adults (aged [≥]18 years) hospitalized with laboratory-confirmed COVID-19 during March 1-December 31, 2020. MeasurementsMonthly trends in weighted percentages of interventions and outcomes including length of stay (LOS), intensive care unit admissions (ICU), invasive mechanical ventilation (IMV), vasopressor use and in-hospital death (death). Monthly hospitalization, ICU and death rates per 100,000 population. ResultsAmong 116,743 hospitalized adults, median age was 62 years. Among 18,508 sampled adults, median LOS decreased from 6.4 (March) to 4.6 days (December). Remdesivir and systemic corticosteroid use increased from 1.7% and 18.9% (March) to 53.8% and 74.2% (December), respectively. Frequency of ICU decreased from 37.8% (March) to 20.5% (December). IMV (27.8% to 8.7%), vasopressors (22.7% to 8.8%) and deaths (13.9% to 8.7%) decreased from March to October; however, percentages of these interventions and outcomes remained stable or increased in November and December. Percentage of deaths significantly decreased over time for non-Hispanic White patients (p-value <0.01) but not non-Hispanic Black or Hispanic patients. Rates of hospitalization (105.3 per 100,000), ICU (20.2) and death (11.7) were highest during December. LimitationsCOVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country. ConclusionsAfter initial improvement during April-October 2020, trends in interventions and outcomes worsened during November-December, corresponding with the 3rd peak of the U.S. pandemic. These data provide a longitudinal assessment of trends in COVID-19-associated outcomes prior to widespread COVID-19 vaccine implementation.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432046

RESUMO

The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies to neutralize these variants. We compared antibody binding and live virus neutralization of sera from naturally infected and spike mRNA vaccinated individuals against a circulating SARS-CoV-2 B.1 variant and the emerging B.1.351 variant. In acutely-infected (5-19 days post-symptom onset), convalescent COVID-19 individuals (through 8 months post-symptom onset) and mRNA-1273 vaccinated individuals (day 14 post-second dose), we observed an average 4.3-fold reduction in antibody titers to the B.1.351-derived receptor binding domain of the spike protein and an average 3.5-fold reduction in neutralizing antibody titers to the SARS-CoV-2 B.1.351 variant as compared to the B.1 variant (spike D614G). However, most acute and convalescent sera from infected and all vaccinated individuals neutralize the SARS-CoV-2 B.1.351 variant, suggesting that protective immunity is retained against COVID-19.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20161810

RESUMO

BackgroundIdentification of risk factors for COVID-19-associated hospitalization is needed to guide prevention and clinical care. ObjectiveTo examine if age, sex, race/ethnicity, and underlying medical conditions is independently associated with COVID-19-associated hospitalizations. DesignCross-sectional. Setting70 counties within 12 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET) and a population-based sample of non-hospitalized adults residing in the COVID-NET catchment area from the Behavioral Risk Factor Surveillance System. ParticipantsU.S. community-dwelling adults ([≥]18 years) with laboratory-confirmed COVID-19-associated hospitalizations, March 1- June 23, 2020. MeasurementsAdjusted rate ratios (aRR) of hospitalization by age, sex, race/ethnicity and underlying medical conditions (hypertension, coronary artery disease, history of stroke, diabetes, obesity [BMI [≥]30 kg/m2], severe obesity [BMI[≥]40 kg/m2], chronic kidney disease, asthma, and chronic obstructive pulmonary disease). ResultsOur sample included 5,416 adults with COVID-19-associated hospitalizations. Adults with (versus without) severe obesity (aRR:4.4; 95%CI: 3.4, 5.7), chronic kidney disease (aRR:4.0; 95%CI: 3.0, 5.2), diabetes (aRR:3.2; 95%CI: 2.5, 4.1), obesity (aRR:2.9; 95%CI: 2.3, 3.5), hypertension (aRR:2.8; 95%CI: 2.3, 3.4), and asthma (aRR:1.4; 95%CI: 1.1, 1.7) had higher rates of hospitalization, after adjusting for age, sex, and race/ethnicity. In models adjusting for the presence of an individual underlying medical condition, higher hospitalization rates were observed for adults [≥]65 years, 45-64 years (versus 18-44 years), males (versus females), and non-Hispanic black and other race/ethnicities (versus non-Hispanic whites). LimitationsInterim analysis limited to hospitalizations with underlying medical condition data. ConclusionOur findings elucidate groups with higher hospitalization risk that may benefit from targeted preventive and therapeutic interventions.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20150755

RESUMO

ObjectivesWe aimed to measure SARS-CoV-2 serologic responses in children hospitalized with multisystem inflammatory syndrome (MIS-C) compared to COVID-19, Kawasaki Disease (KD) and other hospitalized pediatric controls. MethodsFrom March 17, 2020 - May 26, 2020, we prospectively identified hospitalized children at Childrens Healthcare of Atlanta with MIS-C (n=10), symptomatic PCR-confirmed COVID-19 (n=10), KD (n=5), and hospitalized controls (n=4). With IRB approval, we obtained prospective and residual blood samples from these children and measured SARS-CoV-2 spike (S) receptor binding domain (RBD) IgM and IgG binding antibodies by quantitative ELISA and SARS-CoV-2 neutralizing antibodies by live-virus focus reduction neutralization assay. We statistically compared the log-transformed antibody titers among groups and performed correlation analyses using linear regression. ResultsAll children with MIS-C had high titers of SARS-CoV-2 RBD IgG antibodies, which correlated strongly with neutralizing antibodies (R2=0.667, P<0.001). Children with MIS-C had significantly higher SARS-CoV-2 RBD IgG antibody titers (geometric mean titer [GMT] 6800, 95%CI 3495-13231) than children with COVID-19 (GMT 626, 95%CI 251-1563, P<0.001), children with KD (GMT 124, 95%CI 91-170, P<0.001) and other hospitalized pediatric controls (GMT 85 [all below assay limit of detection], P<0.001). All children with MIS-C also had detectable RBD IgM antibodies, indicating recent SARS-CoV-2 infection. RBD IgG titers correlated with erythrocyte sedimentation rate (ESR) (R2=0.512, P<0.046) and with hospital and ICU lengths of stay (R2=0.590, P=0.010). ConclusionQuantitative SARS-CoV-2 RBD antibody titers may have a role in establishing the diagnosis of MIS-C, distinguishing it from other similar clinical entities, and stratifying risk for adverse outcomes. Table of Contents SummaryChildren with MIS-C have high antibody titers to the SARS-CoV-2 spike protein receptor binding domain, which correlate with neutralization, systemic inflammation, and clinical outcomes. Whats Known on This SubjectAlthough the clinical features of a multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 have been recently described, the serologic features of MIS-C are unknown. What This Study AddsIn this case series, all hospitalized children with MIS-C had significantly higher SARS-CoV-2 binding and neutralizing antibodies than children with COVID-19 or Kawasaki Disease. SARS-CoV-2 antibodies correlated with metrics of systemic inflammation and clinical outcomes, suggesting diagnostic and prognostic value.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20103390

RESUMO

BackgroundAs of May 15, 2020, the United States has reported the greatest number of coronavirus disease 2019 (COVID-19) cases and deaths globally. ObjectiveTo describe risk factors for severe outcomes among adults hospitalized with COVID-19. DesignCohort study of patients identified through the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network. Setting154 acute care hospitals in 74 counties in 13 states. Patients2491 patients hospitalized with laboratory-confirmed COVID-19 during March 1-May 2, 2020. MeasurementsAge, sex, race/ethnicity, and underlying medical conditions. ResultsNinety-two percent of patients had [≥]1 underlying condition; 32% required intensive care unit (ICU) admission; 19% invasive mechanical ventilation; 15% vasopressors; and 17% died during hospitalization. Independent factors associated with ICU admission included ages 50-64, 65-74, 75-84 and [≥]85 years versus 18-39 years (adjusted risk ratio (aRR) 1.53, 1.65, 1.84 and 1.43, respectively); male sex (aRR 1.34); obesity (aRR 1.31); immunosuppression (aRR 1.29); and diabetes (aRR 1.13). Independent factors associated with in-hospital mortality included ages 50-64, 65-74, 75-84 and [≥]85 years versus 18-39 years (aRR 3.11, 5.77, 7.67 and 10.98, respectively); male sex (aRR 1.30); immunosuppression (aRR 1.39); renal disease (aRR 1.33); chronic lung disease (aRR 1.31); cardiovascular disease (aRR 1.28); neurologic disorders (aRR 1.25); and diabetes (aRR 1.19). Race/ethnicity was not associated with either ICU admission or death. LimitationData were limited to patients who were discharged or died in-hospital and had complete chart abstractions; patients who were still hospitalized or did not have accessible medical records were excluded. ConclusionIn-hospital mortality for COVID-19 increased markedly with increasing age. These data help to characterize persons at highest risk for severe COVID-19-associated outcomes and define target groups for prevention and treatment strategies. Funding SourceThis work was supported by grant CK17-1701 from the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement and by Cooperative Agreement Number NU38OT000297-02-00 awarded to the Council of State and Territorial Epidemiologists from the Centers for Disease Control and Prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA