Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Global Spine J ; 14(3_suppl): 10S-24S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632715

RESUMO

STUDY DESIGN: Protocol for the development of clinical practice guidelines following the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) standards. OBJECTIVES: Acute SCI or intraoperative SCI (ISCI) can have devastating physical and psychological consequences for patients and their families. The treatment of SCI has dramatically evolved over the last century as a result of preclinical and clinical research that has addressed important knowledge gaps, including injury mechanisms, disease pathophysiology, medical management, and the role of surgery. In an acute setting, clinicians are faced with critical decisions on how to optimize neurological recovery in patients with SCI that include the role and timing of surgical decompression and the best strategies for hemodynamic management. The lack of consensus surrounding these treatments has prevented standardization of care across centers and has created uncertainty with respect to how to best manage patients with SCI. ISCI is a feared complication that can occur in the best of hands. Unfortunately, there are no systematic reviews or clinical practice guidelines to assist spine surgeons in the assessment and management of ISCI in adult patients undergoing spinal surgery. Given these limitations, it is the objective of this initiative to develop evidence-based recommendations that will inform the management of both SCI and ISCI. This protocol describes the rationale for developing clinical practice guidelines on (i) the timing of surgical decompression in acute SCI; (ii) the hemodynamic management of acute SCI; and (iii) the prevention, identification, and management of ISCI in patients undergoing surgery for spine-related pathology. METHODS: Systematic reviews were conducted according to PRISMA standards in order to summarize the current body of evidence and inform the guideline development process. The guideline development process followed the approach proposed by the GRADE working group. Separate multidisciplinary, international groups were created to perform the systematic reviews and formulate the guidelines. All potential conflicts of interest were vetted in advance. The sponsors exerted no influence over the editorial process or the development of the guidelines. RESULTS: This process resulted in both systematic reviews and clinical practice guidelines/care pathways related to the role and timing of surgery in acute SCI; the optimal hemodynamic management of acute SCI; and the prevention, diagnosis and management of ISCI. CONCLUSIONS: The ultimate goal of this clinical practice guideline initiative was to develop evidence-based recommendations for important areas of controversy in SCI and ISCI in hopes of improving neurological outcomes, reducing morbidity, and standardizing care across settings. Throughout this process, critical knowledge gaps and future directions were also defined.

2.
Global Spine J ; 14(3_suppl): 105S-149S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632716

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: In an effort to prevent intraoperative neurological injury during spine surgery, the use of intraoperative neurophysiological monitoring (IONM) has increased significantly in recent years. Using IONM, spinal cord function can be evaluated intraoperatively by recording signals from specific nerve roots, motor tracts, and sensory tracts. We performed a systematic review and meta-analysis of diagnostic test accuracy (DTA) studies to evaluate the efficacy of IONM among patients undergoing spine surgery for any indication. METHODS: The current systematic review and meta-analysis was performed using the Preferred Reporting Items for a Systematic Review and Meta-analysis statement for Diagnostic Test Accuracy Studies (PRISMA-DTA) and was registered on PROSPERO. A comprehensive search was performed using MEDLINE, EMBASE and SCOPUS for all studies assessing the diagnostic accuracy of neuromonitoring, including somatosensory evoked potential (SSEP), motor evoked potential (MEP) and electromyography (EMG), either on their own or in combination (multimodal). Studies were included if they reported raw numbers for True Positives (TP), False Negatives (FN), False Positives (FP) and True Negative (TN) either in a 2 × 2 contingency table or in text, and if they used postoperative neurologic exam as a reference standard. Pooled sensitivity and specificity were calculated to evaluate the overall efficacy of each modality type using a bivariate model adapted by Reitsma et al, for all spine surgeries and for individual disease groups and regions of spine. The risk of bias (ROB) of included studies was assessed using the quality assessment tool for diagnostic accuracy studies (QUADAS-2). RESULTS: A total of 163 studies were included; 52 of these studies with 16,310 patients reported data for SSEP, 68 studies with 71,144 patients reported data for MEP, 16 studies with 7888 patients reported data for EMG and 69 studies with 17,968 patients reported data for multimodal monitoring. The overall sensitivity, specificity, DOR and AUC for SSEP were 71.4% (95% CI 54.8-83.7), 97.1% (95% CI 95.3-98.3), 41.9 (95% CI 24.1-73.1) and .899, respectively; for MEP, these were 90.2% (95% CI 86.2-93.1), 96% (95% CI 94.3-97.2), 103.25 (95% CI 69.98-152.34) and .927; for EMG, these were 48.3% (95% CI 31.4-65.6), 92.9% (95% CI 84.4-96.9), 11.2 (95% CI 4.84-25.97) and .773; for multimodal, these were found to be 83.5% (95% CI 81-85.7), 93.8% (95% CI 90.6-95.9), 60 (95% CI 35.6-101.3) and .895, respectively. Using the QUADAS-2 ROB analysis, of the 52 studies reporting on SSEP, 13 (25%) were high-risk, 10 (19.2%) had some concerns and 29 (55.8%) were low-risk; for MEP, 8 (11.7%) were high-risk, 21 had some concerns and 39 (57.3%) were low-risk; for EMG, 4 (25%) were high-risk, 3 (18.75%) had some concerns and 9 (56.25%) were low-risk; for multimodal, 14 (20.3%) were high-risk, 13 (18.8%) had some concerns and 42 (60.7%) were low-risk. CONCLUSIONS: These results indicate that all neuromonitoring modalities have diagnostic utility in successfully detecting impending or incident intraoperative neurologic injuries among patients undergoing spine surgery for any condition, although it is clear that the accuracy of each modality differs.PROSPERO Registration Number: CRD42023384158.

3.
Spine J ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679077

RESUMO

BACKGROUND CONTEXT: Degenerative cervical myelopathy (DCM) is the most common form of atraumatic spinal cord injury globally. Degeneration of spinal discs, bony osteophyte growth and ligament pathology results in physical compression of the spinal cord contributing to damage of white matter tracts and grey matter cellular populations. This results in an insidious neurological and functional decline in patients which can lead to paralysis. Magnetic resonance imaging (MRI) confirms the diagnosis of DCM and is a prerequisite to surgical intervention, the only known treatment for this disorder. Unfortunately, there is a weak correlation between features of current commonly acquired MRI scans ("community MRI, cMRI") and the degree of disability experienced by a patient. PURPOSE: This study examines the predictive ability of current MRI sequences relative to "advanced MRI" (aMRI) metrics designed to detect evidence of spinal cord injury secondary to degenerative myelopathy. We hypothesize that the utilization of higher fidelity aMRI scans will increase the effectiveness of machine learning models predicting DCM severity and may ultimately lead to a more efficient protocol for identifying patients in need of surgical intervention. STUDY DESIGN/SETTING: Single institution analysis of imaging registry of patients with DCM. PATIENT SAMPLE: A total of 296 patients in the cMRI group and 228 patients in the aMRI group. OUTCOME MEASURES: Physiologic measures: accuracy of machine learning algorithms to detect severity of DCM assessed clinically based on the modified Japanese Orthopedic Association (mJOA) scale. METHODS: Patients enrolled in the Canadian Spine Outcomes Research Network registry with DCM were screened and 296 cervical spine MRIs acquired in cMRI were compared with 228 aMRI acquisitions. aMRI acquisitions consisted of diffusion tensor imaging, magnetization transfer, T2-weighted, and T2*-weighted images. The cMRI group consisted of only T2-weighted MRI scans. Various machine learning models were applied to both MRI groups to assess accuracy of prediction of baseline disease severity assessed clinically using the mJOA scale for cervical myelopathy. RESULTS: Through the utilization of Random Forest Classifiers, disease severity was predicted with 41.8% accuracy in cMRI scans and 73.3% in the aMRI scans. Across different predictive model variations tested, the aMRI scans consistently produced higher prediction accuracies compared to the cMRI counterparts. CONCLUSIONS: aMRI metrics perform better in machine learning models at predicting disease severity of patients with DCM. Continued work is needed to refine these models and address DCM severity class imbalance concerns, ultimately improving model confidence for clinical implementation.

4.
Spine J ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679073

RESUMO

BACKGROUND: Despite an abundance of literature on degenerative cervical myelopathy (DCM), little is known about pre-operative expectations of these patients. PURPOSE: The primary objective was to describe patient pre-operative expectations. Secondary objectives included identifying patient characteristics associated with high pre-operative expectations and to determine if expectations varied depending on myelopathy severity. STUDY DESIGN: This was a retrospective study of a prospective multicenter, observational cohort of patients with DCM. PATIENT SAMPLE: Patients who consented to undergo surgical treatment between January 2019 and September 2022 were included. OUTCOMES MEASURES: An 11-domain expectation questionnaire was completed pre-operatively whereby patients quantified the expected change in each domain. METHODS: The most important expected change was captured. A standardized expectation score was calculated as the sum of each expectation divided by the maximal possible score. The high expectation group was defined by patients who had an expectation score above the 75th percentile. Predictors of patients with high expectations were determined using multivariable logistic regression models. RESULTS: There were 262 patients included. The most important patient expectation was preventing neurological worsening (40.8%) followed by improving balance when standing or walking (14.5%), improving independence in everyday activities (10.3%), and relieving arm tingling, burning and numbness (10%). Patients with mild myelopathy were more likely to select no worsening as the most important expected change compared to patients with severe myelopathy (p<.01). Predictors of high patient expectations were: having fewer comorbidities (OR -0.30 for every added comorbidity, 95% CI -0.59 to -0.10, p=.01), a shorter duration of symptoms (OR 0.92, 95% CI 0.35-1.19, p=.02), no contribution from "failure of other treatments" on the decision to undergo surgery (OR 1.49, 95% CI 0.56-2.71, p=.02) and more severe neck pain (OR 0.19 for 1 point increase, 95% CI 0.05-0.37, p=.01). CONCLUSIONS: Most patients undergoing surgery for DCM expect prevention of neurological decline, better functional status, and improvement in their myelopathic symptoms. Stopping neurological deterioration is the most important expected outcomes by patients.

5.
Neurosurgery ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465953

RESUMO

BACKGROUND AND OBJECTIVES: There is a lack of data examining the effects of perioperative adverse events (AEs) on long-term outcomes for patients undergoing surgery for degenerative cervical myelopathy. We aimed to investigate associations between the occurrence of perioperative AEs and coprimary outcomes: (1) modified Japanese Orthopaedic Association (mJOA) score and (2) Neck Disability Index (NDI) score. METHODS: We analyzed data from 800 patients prospectively enrolled in the Canadian Spine Outcomes and Research Network multicenter observational study. The Spine AEs Severity system was used to collect intraoperative and postoperative AEs. Patients were assessed at up to 2 years after surgery using the NDI and the mJOA scale. We used a linear mixed-effect regression to assess the influence of AEs on longitudinal outcome measures as well as multivariable logistic regression to assess factors associated with meeting minimal clinically important difference (MCID) thresholds at 1 year. RESULTS: There were 167 (20.9%) patients with minor AEs and 36 (4.5%) patients with major AEs. The occurrence of major AEs was associated with an average increase in NDI of 6.8 points (95% CI: 1.1-12.4, P = .019) and reduction of 1.5 points for mJOA scores (95% CI: -2.3 to -0.8, P < .001) up to 2 years after surgery. Occurrence of major AEs reduced the odds of patients achieving MCID targets at 1 year after surgery for mJOA (odds ratio 0.23, 95% CI: 0.086-0.53, P = .001) and for NDI (odds ratio 0.34, 95% CI: 0.11-0.84, P = .032). CONCLUSION: Major AEs were associated with reduced functional gains and worse recovery trajectories for patients undergoing surgery for degenerative cervical myelopathy. Occurrence of major AEs reduced the probability of achieving mJOA and NDI MCID thresholds at 1 year. Both minor and major AEs significantly increased health resource utilization by reducing the proportion of discharges home and increasing length of stay.

6.
Global Spine J ; 14(3_suppl): 174S-186S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526922

RESUMO

STUDY DESIGN: Clinical practice guideline development. OBJECTIVES: Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS: A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS: The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS: It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy.

7.
Global Spine J ; 14(3_suppl): 80S-104S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526927

RESUMO

STUDY DESIGN: Mixed-methods approach. OBJECTIVES: Intra-operative spinal cord injury (ISCI) is a devastating complication of spinal surgery. Presently, a uniform definition for ISCI does not exist. Consequently, the reported frequency of ISCI and important risk factors vary in the existing literature. To address these gaps in knowledge, a mixed-methods knowledge synthesis was undertaken. METHODS: A scoping review was conducted to review the definitions used for ISCI and to ascertain the frequency of ISCI. The definition of ISCI underwent formal review, revision and voting by the Guidelines Development Group (GDG). A systematic review of the literature was conducted to determine the risk factors for ISCI. Based on this systematic review and GDG input, a table was created to summarize the factors deemed to increase the risk for ISCI. All reviews were done according to PRISMA standards and were registered on PROSPERO. RESULTS: The frequency of ISCI ranged from 0 to 61%. Older age, male sex, cardiovascular disease including hypertension, severe myelopathy, blood loss, requirement for osteotomy, coronal deformity angular ratio, and curve magnitude were associated with an increased risk of ISCI. Better pre-operative neurological status and use of intra-operative neuromonitoring (IONM) were associated with a decreased risk of ISCI. The risk factors for ISCI included a rigid thoracic curve with high deformity angular ratio, revision congenital deformity with significant cord compression and myelopathy, extrinsic intradural or extradural lesions with cord compression and myelopathy, intramedullary spinal cord tumor, unstable spine fractures (bilateral facet dislocation and disc herniation), extension distraction injury with ankylosing spondylitis, ossification of posterior longitudinal ligament (OPLL) with severe cord compression, and moderate to severe myelopathy. CONCLUSIONS: ISCI has been defined as "a new or worsening neurological deficit attributable to spinal cord dysfunction during spine surgery that is diagnosed intra-operatively via neurophysiologic monitoring or by an intraoperative wake-up test, or immediately post-operatively based on clinical assessment". This paper defines clinical and imaging factors which increase the risk for ISCI and that could assist clinicians in decision making.

8.
Global Spine J ; 14(3_suppl): 212S-222S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526921

RESUMO

STUDY DESIGN: Development of a clinical practice guideline following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) process. OBJECTIVE: The objectives of this study were to develop guidelines that outline the utility of intraoperative neuromonitoring (IONM) to detect intraoperative spinal cord injury (ISCI) among patients undergoing spine surgery, to define a subset of patients undergoing spine surgery at higher risk for ISCI and to develop protocols to prevent, diagnose, and manage ISCI. METHODS: All systematic reviews were performed according to PRISMA standards and registered on PROSPERO. A multidisciplinary, international Guidelines Development Group (GDG) reviewed and discussed the evidence using GRADE protocols. Consensus was defined by 80% agreement among GDG members. A systematic review and diagnostic test accuracy (DTA) meta-analysis was performed to synthesize pooled evidence on the diagnostic accuracy of IONM to detect ISCI among patients undergoing spinal surgery. The IONM modalities evaluated included somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), electromyography (EMG), and multimodal neuromonitoring. Utilizing this knowledge and their clinical experience, the multidisciplinary GDG created recommendations for the use of IONM to identify ISCI in patients undergoing spine surgery. The evidence related to existing care pathways to manage ISCI was summarized and based on this a novel AO Spine-PRAXIS care pathway was created. RESULTS: Our recommendations are as follows: (1) We recommend that intraoperative neurophysiological monitoring be employed for high risk patients undergoing spine surgery, and (2) We suggest that patients at "high risk" for ISCI during spine surgery be proactively identified, that after identification of such patients, multi-disciplinary team discussions be undertaken to manage patients, and that an intraoperative protocol including the use of IONM be implemented. A care pathway for the prevention, diagnosis, and management of ISCI has been developed by the GDG. CONCLUSION: We anticipate that these guidelines will promote the use of IONM to detect and manage ISCI, and promote the use of preoperative and intraoperative checklists by surgeons and other team members for high risk patients undergoing spine surgery. We welcome teams to implement and evaluate the care pathway created by our GDG.

9.
Global Spine J ; 14(3_suppl): 58S-79S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526931

RESUMO

STUDY DESIGN: Systematic review update. OBJECTIVES: Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI. METHODS: We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence. RESULTS: From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment. CONCLUSIONS: This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting.

10.
Global Spine J ; 14(3_suppl): 166S-173S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526925

RESUMO

STUDY DESIGN: This study is a mixed methods approach. OBJECTIVES: Intraoperative spinal cord injury (ISCI) is a challenging complication in spine surgery. Intra-operative neuromonitoring (IONM) has been developed to detect changes in neural function. We report on the first multidisciplinary, international effort through AO Spine and the Praxis Spinal Cord Institute to develop a comprehensive guideline and care pathway for the prevention, diagnosis, and management of ISCI. METHODS: Three literature reviews were registered on PROSPERO (CRD 42022298841) and performed according to PRISMA guidelines: (1) Definitions, frequency, and risk factors for ISCI, (2) Meta-analysis of the accuracy of IONM for diagnosis of ISCI, (3) Reported management approaches for ISCI and related events. The results were presented in a consensus session to decide the definition of IONM and recommendation of its use in high-risk cases. Based on a literature review of management strategies for ISCI, an intra-operative checklist and overall care pathway was developed by the study team. RESULTS: An operational definition and high-risk patient categories for ISCI were established. The reported incidence of deficits was documented to be higher in intramedullary tumour spine surgery. Multimodality IONM has a high sensitivity and specificity. A guideline recommendation of IONM to be employed for high-risk spine cases was made. The different sections of the intraoperative checklist include surgery, anaesthetic and neurophysiology. The care pathway includes steps (1) initial clinical assessment, (2) pre-operative planning, (3) surgical/anaesthetic planning, (4) intra-operative management, and (5) post-operative management. CONCLUSIONS: This is the first evidence based comprehensive guideline and care pathway for ISCI using the GRADE methodology. This will facilitate a reduction in the incidence of ISCI and improved outcomes from this complication. We welcome the wide implementation and validation of these guidelines and care pathways in prospective, multicentre studies.

11.
Global Spine J ; 14(3_suppl): 223S-230S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526926

RESUMO

STUDY DESIGN: Narrative summary of the 2023 AO Spine-Praxis clinical practice guidelines for management in acute spinal cord injury (SCI). OBJECTIVES: The objective of this article is to summarize the key findings of the clinical practice guidelines for the optimal management of traumatic and intraoperative SCI (ISCI). This article will also highlight potential knowledge translation opportunities for each recommendation and discuss important knowledge gaps and areas of future research. METHODS: Systematic reviews were conducted according to accepted methodological standards to evaluate the current body of evidence and inform the guideline development process. The summarized evidence was reviewed by a multidisciplinary guidelines development group that consisted of international multidisciplinary stakeholders. The Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach was used to rate the certainty of the evidence for each critical outcome and the "evidence to recommendation" framework was used to formulate the final recommendations. RESULTS: The key recommendations regarding the timing of surgical decompression, hemodynamic management, and the prevention, diagnosis, and management of ISCI are summarized. While a strong recommendation was made for early surgery, further prospective research is required to define what constitutes sufficient surgical decompression, examine the role of ultra-early surgery, and assess the impact of early surgery in different SCI phenotypes, including central cord syndrome. Furthermore, additional investigation is required to evaluate the impact of mean arterial blood pressure targets on neurological recovery and to determine the utility of spinal cord perfusion pressure measurements. Finally, there is a need to examine the role of neuroprotective agents for the treatment of ISCI and to prospectively validate the new AO Spine-Praxis care pathway for the prevention, diagnosis, and management of ISCI. To optimize the translation of these guidelines into practice, important barriers to their implementation, particularly in underserved areas, need to be explored. Ultimately, these recommendations will help to establish more personalized approaches to care for SCI patients. CONCLUSIONS: The recommendations from the 2023 AO Spine-Praxis guidelines not only highlight the current best practice in the management of SCI, but reveal critical knowledge gaps and barriers to implementation that will help to guide further research efforts in SCI.

12.
Global Spine J ; 14(3_suppl): 150S-165S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526924

RESUMO

STUDY DESIGN: Scoping Review. OBJECTIVE: To review the literature and summarize information on checklists and algorithms for responding to intraoperative neuromonitoring (IONM) alerts and management of intraoperative spinal cord injuries (ISCIs). METHODS: MEDLINE® was searched from inception through January 26, 2022 as were sources of grey literature. We attempted to obtain guidelines and/or consensus statements from the following sources: American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM), American Academy of Neurology (AAN), American Clinical Neurophysiology Society, NASS (North American Spine Society), and other spine surgery organizations. RESULTS: Of 16 studies reporting on management strategies for ISCIs, two were publications of consensus meetings which were conducted according to the Delphi method and eight were retrospective cohort studies. The remaining six studies were narrative reviews that proposed intraoperative checklists and management strategies for IONM alerts. Of note, 56% of included studies focused only on patients undergoing spinal deformity surgery. Intraoperative considerations and measures taken in the event of an ISCI are divided and reported in three categories of i) Anesthesiologic, ii) Neurophysiological/Technical, and iii) Surgical management strategies. CONCLUSION: There is a paucity of literature on comparative effectiveness and harms of management strategies in response to an IONM alert and possible ISCI. There is a pressing need to develop a standardized checklist and care pathway to avoid and minimize the risk of postoperative neurologic sequelae.

13.
Global Spine J ; 14(3_suppl): 187S-211S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526923

RESUMO

STUDY DESIGN: Clinical practice guideline development following the GRADE process. OBJECTIVES: Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets. METHODS: A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences. RESULTS: The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the "lower limit," but not actively augmented beyond an "upper limit" of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the "target MAP" was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG "suggested" that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence. CONCLUSION: We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI.

14.
Global Spine J ; 14(3_suppl): 25S-37S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526928

RESUMO

STUDY DESIGN: An overview of the methods used to develop clinical practice guidelines (CPGs). OBJECTIVES: Acute spinal cord injury (SCI) and intraoperative SCI (ISCI) can have devastating physical and psychological consequences for patients and their families. To date, there are several studies that have discussed the diagnostic and management strategies for both SCI and ISCI. CPGs in SCI help to distill and translate the current evidence into actionable recommendations, standardize care across centers, optimize patient outcomes, and reduce costs and unnecessary interventions. Furthermore, they can be used by patients to assist in making decisions about certain treatments and by policy makers to inform allocation of resources. The objective of this article is to summarize the methods used to develop CPGs for the timing of surgery and hemodynamic management of acute SCI, as well as the identification and treatment of ISCI. METHODS: The CPGs were developed using standards established by the Institute of Medicine (now the National Academy of Medicine), the Guideline International Network and several other organizations. Systematic reviews were conducted according to accepted methodological standards (eg, Institute of Medicine, Agency for Healthcare Research and Quality and Patient-Centered Outcomes Research Institute) in order to summarize the current body of evidence and inform the guideline development process. Protocols for each guideline were created. A multidisciplinary guideline development group (GDG) was formed that included individuals living with SCI as well as clinicians from the broad range of specialties that encounter patients with SCI: spine or trauma surgeons, critical care physicians, rehabilitation specialists, neurologists, anesthesiologists and other healthcare professionals. Individuals living with SCI were also included in the GDG. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach was used to rate the certainty of the evidence for each critical outcome. The "evidence to recommendation" framework was then used to translate the evidence obtained from the systematic review to an actionable recommendation. This framework provides structure when assessing the body of evidence and considers several additional factors when rating the strength of the recommendation, including the magnitude of benefits and harms, patient preferences, resource use, health equities, acceptability and feasibility. Finally, the CPGs were appraised both internally and externally. RESULTS: The results of the CPGs for SCI are provided in separate articles in this focus issue. CONCLUSIONS: Development of these CPGs for SCI followed the methodology proposed by the Institute of Medicine the Guideline International Network and the GRADE Working Group. It is anticipated that these CPGs will assist clinicians implement the best evidence into practice and facilitate shared-decision making with patients.

15.
Global Spine J ; 14(3_suppl): 38S-57S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526929

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVE: Surgical decompression is a cornerstone in the management of patients with traumatic spinal cord injury (SCI); however, the influence of the timing of surgery on neurological recovery after acute SCI remains controversial. This systematic review aims to summarize current evidence on the effectiveness, safety, and cost-effectiveness of early (≤24 hours) or late (>24 hours) surgery in patients with acute traumatic SCI for all levels of the spine. Furthermore, this systematic review aims to evaluate the evidence with respect to the impact of ultra-early surgery (earlier than 24 hours from injury) on these outcomes. METHODS: A systematic search of the literature was performed using the MEDLINE database (PubMed), Cochrane database, and EMBASE. Two reviewers independently screened the citations from the search to determine whether an article satisfied predefined inclusion and exclusion criteria. For all key questions, we focused on primary studies with the least potential for bias and those that controlled for baseline neurological status and specified time from injury to surgery. Risk of bias of each article was assessed using standardized tools based on study design. Finally, the overall strength of evidence for the primary outcomes was assessed using the GRADE approach. Data were synthesized both qualitatively and quantitively using meta-analyses. RESULTS: Twenty-one studies met inclusion and exclusion criteria and formed the evidence base for this review update. Seventeen studies compared outcomes between patients treated with early (≤24 hours from injury) compared to late (>24 hours) surgical decompression. An additional 4 studies evaluated even earlier time frames: <4, <5, <8 or <12 hours. Based on moderate evidence, patients were 2 times more likely to recover by ≥ 2 grades on the ASIA Impairment Score (AIS) at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, moderate evidence suggested that patients receiving early decompression had an additional 4.50 (95% CI 1.70 to 7.29) point improvement on the ASIA motor score. With respect to administrative outcomes, there was low evidence that early decompression may decrease acute hospital length of stay. In terms of safety, there was moderate evidence that suggested the rate of major complications does not differ between patients undergoing early compared to late surgery. Furthermore, there was no difference in rates of mortality, surgical device-related complications, sepsis/systemic infection or neurological deterioration based on timing of surgery. Firm conclusions were not possible with respect to the impact of ultra-early surgery on neurological, functional or safety outcomes given the poor-quality studies, imprecision and the overlap in the time frames examined. CONCLUSIONS: This review provides an evidence base to support the update on clinical practice guidelines related to the timing of surgical decompression in acute SCI. Overall, the strength of evidence was moderate that early surgery (≤24 hours from injury) compared to late (>24 hours) results in clinically meaningful improvements in neurological recovery. Further studies are required to delineate the role of ultra-early surgery in patients with acute SCI.

16.
Global Spine J ; 14(3_suppl): 5S-9S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526930

RESUMO

STUDY DESIGN: Narrative overview and summary. OBJECTIVES: The objective of this introductory manuscript is to provide an overview of the effort that was undertaken to establish clinical practice guidelines for a number of important topics in spinal cord injury (SCI). These topics included: 1. The role and timing of surgical decompression after acute traumatic SCI; 2. The hemodynamic management of acute traumatic SCI; and 3. The definition, diagnosis, and management of intra-operative SCI. Here, we introduce the rationale for the guidelines, the methodology utilized, and summarize how the topics are addressed within various manuscripts of this Focus Issue. METHODS: The key clinical questions were defined using the PICO format for treatment reviews (patient; intervention; comparison; outcomes) or PPO format (patient, prognostic factor, outcomes) for risk factor review. Multi-disciplinary, international guideline development groups (GDGs) were established to evaluate and collate the available evidence in a rigorous, systematic manner, followed by a review of systematically obtained evidence within the framework of the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria and application of the Evidence to Decision process. Consensus meetings, using a modified Delphi approach, were held with the multidisciplinary, international GDGs using online video-conferencing technology and anonymous voting to develop the final recommendations for each of the topics addressed. All systematic review protocols followed PRISMA standards and were registered on PROSPERO; all potential conflicts were vetted in an open and transparent manner. The funders (AO Spine and Praxis Spinal Cord Institute) had no influence over editorial content or the guidelines process). RESULTS: Updated guidelines were established for the timing of surgical decompression after acute SCI, with surgical decompression within 24 hours of injury now "recommended" as a treatment option. Updated guidelines were also established for hemodynamic management, with an expanded target range for mean arterial pressure (MAP) of 75-80 to 90-95 mmHg for between 3 to 7 days post-injury now "suggested" as a treatment option. The available literature mandated scoping and systematic reviews on the topic of intra-operative SCI, and this resulted in manuscripts to address the definition, frequency, and risk factors, to define the role of intra-operative neuromonitoring, and to suggest an evidence-based care pathway for management. CONCLUSION: A rigorous process following GRADE standards was undertaken to review the available evidence and establish guideline recommendations around the role and timing of surgery in acute SCI, optimal hemodynamic management of acute SCI and the prevention, diagnosis and management of intraoperative SCI. This effort also identified key knowledge gaps and future directions for study, which will serve to refine these recommendations in the future.

17.
Neurosurgery ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305343

RESUMO

BACKGROUND AND OBJECTIVES: The advantages and disadvantages of anterior vs posterior surgical approaches for patients with progressive degenerative cervical myelopathy (DCM) remain uncertain. Our primary objective was to evaluate patient-reported disability at 1 year after surgery. Our secondary objectives were to evaluate differences in patient profiles selected for each approach in routine clinical practice and to compare neurological function, neck and arm pain, health-related quality of life, adverse events, and rates of reoperations. METHODS: We analyzed data from patients with DCM who were enrolled in an ongoing multicenter prospective observational cohort study. We controlled for differences in baseline characteristics and numbers of spinal levels treated using multivariable logistic regression. Adverse events were collected according to the Spinal Adverse Events Severity protocol. RESULTS: Among 559 patients, 261 (47%) underwent anterior surgery while 298 (53%) underwent posterior surgery. Patients treated posteriorly had significantly worse DCM severity and a greater number of vertebral levels involved. After adjusting for confounders, there was no significant difference between approaches for odds of achieving the minimum clinically important difference for the Neck Disability Index (odds ratio 1.23, 95% CI 0.82 to 1.86, P = .31). There was also no significant difference for change in modified Japanese Orthopedic Association scores, and differences in neck and arm pain and health-related quality of life did not exceed minimum clinically important differences. Patients treated anteriorly experienced greater rates of dysphagia, whereas patients treated posteriorly experienced greater rates of wound complications, neurological complications, and reoperations. CONCLUSION: Patients selected for posterior surgery had worse DCM and a greater number of vertebral levels involved. Despite this, anterior and posterior surgeries were associated with similar improvements in disability, neurological function, pain, and quality of life. Anterior surgery had a more favorable profile of adverse events, which suggests it might be a preferred option when feasible.

18.
Global Spine J ; 14(3): 1038-1051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37705344

RESUMO

STUDY DESIGN: Systematic Review and Meta-Analysis. OBJECTIVES: This study aimed to evaluate the clinical and radiological outcomes of surgically treated adjacent segment disease (ASDis) following ACDF with either anterior plate construct (APC) or stand-alone anchored spacers (SAAS). METHOD: Multiple databases were searched until December 2022 for pertinent studies. The primary outcome was health-related quality of life outcomes [JOA, NDI, and VAS], whereas, the secondary outcomes included operative characteristics [estimated blood loss (EBL) and operative time (OT)], radiological outcomes [C2-C7 Cobb angle, disc height index (DHI) changes, fusion rate], and complications. RESULTS: A total of 5 studies were included, comprising 210 patients who had been surgically treated for cervical ASDis. Among them, 113 received APC, and 97 received SAAS. Postoperative dysphagia was significantly higher in the APC group [47% vs 11%, OR = 7.7, 95% CI = 3.1-18.9, P < .05]. Similarly, operative time and blood loss were higher in the APC group compared to the SAAS group; [MD = 16.96, 95% CI = 7.87-26.06, P < .05] and [MD = 5.22, 95% CI = .35 - 10.09, P < .05], respectively. However, there was no difference in the rate of prolonged dysphagia and clinical outcomes in terms of JOA, NDI, and VAS. Furthermore, there was no difference in the radiological parameters including the C2-7 Cobb angle and DHI as well as the fusion rate. CONCLUSION: Our meta-analysis demonstrated that both surgical techniques (APC and SAAS) are effective in treating ASDis. However, with low certainty of the evidence, considering patients are at high risk of dysphagia following revision cervical spine surgery SAAS may be the preferred choice.

19.
Bone Joint J ; 105-B(9): 971-976, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37654121

RESUMO

Aims: This study aims to determine difference in annual rate of early-onset (≤ 90 days) deep surgical site infection (SSI) following primary total knee arthroplasty (TKA) for osteoarthritis, and to identify risk factors that may be associated with infection. Methods: This is a retrospective population-based cohort study using prospectively collected patient-level data between 1 January 2013 and 1 March 2020. The diagnosis of deep SSI was defined as per the Centers for Disease Control/National Healthcare Safety Network criteria. The Mann-Kendall Trend test was used to detect monotonic trends in annual rates of early-onset deep SSI over time. Multiple logistic regression was used to analyze the effect of different patient, surgical, and healthcare setting factors on the risk of developing a deep SSI within 90 days from surgery for patients with complete data. We also report 90-day mortality. Results: A total of 39,038 patients underwent primary TKA for osteoarthritis during the study period. Of these, 275 patients developed a deep SSI within 90 days of surgery, representing a cumulative incidence of 0.7%. The annual infection rate did not significantly decrease over the seven-year study period (p = 0.162). Overall, 13,885 (35.5%) cases were excluded from the risk analysis due to missing data. Risk factors associated with early-onset deep SSI included male sex, American Society of Anesthesiologists grade ≥ 3, blood transfusion, acute length of stay, and surgeon volume < 30 TKAs/year. Early-onset deep SSI was not associated with increased 90-day mortality. Conclusion: This study establishes a reliable baseline infection rate for early-onset deep SSI after TKA for osteoarthritis using robust Infection Prevention and Control surveillance data, and identifies several potentially modifiable risk factors.


Assuntos
Artroplastia do Joelho , Osteoartrite , Humanos , Masculino , Artroplastia do Joelho/efeitos adversos , Estudos de Coortes , Incidência , Estudos Retrospectivos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Fatores de Risco
20.
J Neurotrauma ; 40(23-24): 2638-2647, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37294210

RESUMO

Given the complexity of care necessitated after an acute traumatic spinal cord injury (SCI), it seems intuitively beneficial for such care to be delivered at hospitals with specialized SCI expertise. Demonstrating these benefits is not straightforward, however. We sought to determine whether specialized acute hospital care influenced the most fundamental outcomes after SCI: mortality within the first year of injury. We compared survival among patients with incomplete tSCI admitted to a single quaternary-level trauma hospital with a specialized acute SCI program versus those admitted to trauma hospitals without specialized acute SCI care. We performed a population-based retrospective observational cohort study using administrative and clinical data linked from multiple sources in British Columbia (BC) from 2001 to 2017. Among a cohort of 1920 patients, there were 193 deaths within one year. We failed to identify a significant overall benefit for survival after adjusting for potential confounders, and the confidence intervals (CIs) were compatible with both benefit and harm (odds ratio [OR] 1.01, 95% CI 0.17 to 6.11, p = 0.99). Significant associations were observed with age greater than 65 (OR 4.92, 95% CI 1.66 to 14.57, p < 0.01), Charlson Comorbidity Index (OR 1.61, 95% CI 1.42 to 1.83, p < 0.01), Injury Severity Score (OR 1.08, 95% CI 1.06 to 1.11, p < 0.01), and traumatic brain injury (OR 2.12, 95% CI 1.32 to 3.41, p < 0.01). Among patients with acute tSCI, admission to a hospital with specialized acute SCI care was not associated with improved overall one-year survival. Subgroup analyses, however, suggested heterogeneity of effects, with little benefit for older patients with less polytrauma and substantial benefit for younger patients with greater polytrauma.


Assuntos
Traumatismo Múltiplo , Traumatismos da Medula Espinal , Humanos , Colúmbia Britânica/epidemiologia , Estudos Retrospectivos , Traumatismos da Medula Espinal/terapia , Hospitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...