Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 13(1): 129, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464380

RESUMO

BACKGROUND: How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers. RESULTS: To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter. We show that Fra-1 does not repress TGFB2 transcription via reducing RNA Pol II recruitment at the gene promoter but by decreasing the formation of its transcription-initiating form. This is associated with complex long-range chromatin interactions implicating multiple molecularly and functionally heterogeneous Fra-1-bound transcriptional enhancers distal to the TGFB2 transcriptional start site. In particular, the latter display differential requirements upon the presence and the activity of the lysine acetyltransferase p300/CBP. Furthermore, the final transcriptional output of the TGFB2 gene seems to depend on a balance between the positive and negative effects of Fra-1 at these enhancers. CONCLUSION: Our work unveils complex molecular mechanisms underlying the repressive actions of Fra-1 on TGFB2 gene expression. This has consequences for our general understanding of the functioning of the ubiquitous transcriptional complex AP-1, of which Fra-1 is the most documented component for prooncogenic activities. In addition, it raises the general question of the heterogeneity of the molecular functions of TFs binding to different enhancers regulating the same gene.

2.
Nucleic Acids Res ; 50(14): 7938-7958, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871293

RESUMO

Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.


Assuntos
Histona Desacetilase 1 , Leucemia Eritroblástica Aguda , Complexo Repressor Polycomb 2 , Proteínas Proto-Oncogênicas , Transativadores , Acetilação , Animais , Cromatina/genética , Histona Desacetilase 1/genética , Leucemia Eritroblástica Aguda/genética , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
3.
Mol Cancer Res ; 17(10): 1999-2014, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31300541

RESUMO

The architectural chromatin protein HMGA1 and the transcription factor Fra-1 are both overexpressed in aggressive triple-negative breast cancers (TNBC), where they both favor epithelial-to-mesenchymal transition, invasion, and metastasis. We therefore explored the possibility that Fra-1 might be involved in enhanced transcription of the HMGA1 gene in TNBCs by exploiting cancer transcriptome datasets and resorting to functional studies combining RNA interference, mRNA and transcriptional run-on assays, chromatin immunoprecipitation, and chromosome conformation capture approaches in TNBC model cell lines. Our bioinformatic analysis indicated that Fra-1 and HMGA1 expressions positively correlate in primary samples of patients with TNBC. Our functional studies showed that Fra-1 regulates HMGA1 mRNA expression at the transcriptional level via binding to enhancer elements located in the last two introns of the gene. Although Fra-1 binding is required for p300/CBP recruitment at the enhancer domain, this recruitment did not appear essential for Fra-1-stimulated HMGA1 gene expression. Strikingly, Fra-1 binding is required for efficient recruitment of RNA Polymerase II at the HMGA1 promoter. This is permitted owing to chromatin interactions bringing about the intragenic Fra-1-binding enhancers and the gene promoter region. Fra-1 is, however, not instrumental for chromatin loop formation at the HMGA1 locus but rather exerts its transcriptional activity by exploiting chromatin interactions preexisting to its binding. IMPLICATIONS: We demonstrate that Fra-1 bound to an intragenic enhancer region is required for RNA Pol II recruitement at the HMGA1 promoter. Thereby, we provide novel insights into the mechanisms whereby Fra-1 exerts its prooncogenic transcriptional actions in the TNBC pathologic context.


Assuntos
Proteína HMGA1a/genética , Oncogenes/genética , Fator de Transcrição AP-1/genética , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Feminino , Humanos
4.
Biochim Biophys Acta Rev Cancer ; 1872(1): 11-23, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034924

RESUMO

The ubiquitous family of AP-1 dimeric transcription complexes is involved in virtually all cellular and physiological functions. It is paramount for cells to reprogram gene expression in response to cues of many sorts and is involved in many tumorigenic processes. How AP-1 controls gene transcription has largely remained elusive till recently. The advent of the "omics" technologies permitting genome-wide studies of transcription factors has however changed and improved our view of AP-1 mechanistical actions. If these studies confirm that AP-1 can sometimes act as a local transcriptional switch operating in the vicinity of transcription start sites (TSS), they strikingly indicate that AP-1 principally operates as a remote command binding to distal enhancers, placing chromatin architecture dynamics at the heart of its transcriptional actions. They also unveil novel constraints operating on AP-1, as well as novel mechanisms used to regulate gene expression via transcription-pioneering-, chromatin-remodeling- and chromatin accessibility maintenance effects.


Assuntos
Complexos Multiproteicos/genética , Fator de Transcrição AP-1/genética , Transcrição Gênica , Ativação Transcricional/genética , Sítios de Ligação/genética , Núcleo Celular/genética , Montagem e Desmontagem da Cromatina/genética , Humanos , Complexos Multiproteicos/química , Fator de Transcrição AP-1/química , Sítio de Iniciação de Transcrição
5.
J Nanosci Nanotechnol ; 19(7): 3744-3754, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30764930

RESUMO

Small well-defined spherical gold nanoparticles were synthesized by a simple non-physical method based on a mixture of gold salt, tetraethylene oxide and water, free of any additional reducing chemical agent or physical method. The ratio of tetraethylene oxide to water was optimized to achieve a fast synthesis within 30 min. Transmission electron microscopy images showed well dispersed gold nanospheres with a size ranging from 10 to 15 nm. XPS was used to confirm the oxidation state of gold nanoparticles and the oxidation products from tetraethylene oxide after the reaction. This new protocol performed in sustainable and biocompatible conditions is complementary to the current methods used to synthesize gold nanospheres. In order to use these particles in biological samples, we correlated the atomic absorption with the colorimetric concentration of nanospheres in solution. After 24 h of incubation of cancer or neuronal cell lines with these nanoparticles, transmission electron microscopy images showed similar cellular uptake in both cell lines, especially in cytoplasmic vesicular structures.


Assuntos
Ouro , Nanopartículas Metálicas , Compostos de Ouro , Óxidos , Água
6.
Clin Epigenetics ; 9: 80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804523

RESUMO

BACKGROUND: The epithelial-to-mesenchymal transition (EMT) enables epithelial cancer cells to acquire mesenchymal features and contributes to metastasis and resistance to treatment. This process involves epigenetic reprogramming for gene expression. We explored global histone modifications during TGF-ß1-induced EMT in two non-small cell lung cancer (NSCLC) cell lines and tested different epigenetic treatment to modulate or partially reverse EMT. RESULTS: Loss of classical epithelial markers and gain of mesenchymal markers were verified in A549 and H358 cell lines during TGF-ß1-induced EMT. In addition, we noticed increased expression of the axonal guidance protein semaphorin 3C (SEMA3C) and PD-L1 (programmed death-ligand 1) involved in the inhibition of the immune system, suggesting that both SEMA3C and PD-L1 could be the new markers of TGF-ß1-induced EMT. H3K79me3 and H2BK120me1 were decreased in A549 and H358 cell lines after a 48-h TGF-ß1 treatment, as well as H2BK120ac in A549 cells. However, decreased H3K79me3 was not associated with expression of the histone methyltransferase DOT1L. Furthermore, H3K79me3 was decreased in tumors compared in normal tissues and not associated with cell proliferation. Associations of histone deacetylase inhibitor (SAHA) with DOT1L inhibitors (EPZ5676 or SGC0946) or BET bromodomain inhibitor (PFI-1) were efficient to partially reverse TGF-ß1 effects by decreasing expression of PD-L1, SEMA3C, and its receptor neuropilin-2 (NRP2) and by increasing epithelial markers such as E-cadherin. CONCLUSION: Histone methylation was modified during EMT, and combination of epigenetic compounds with conventional or targeted chemotherapy might contribute to reduce metastasis and to enhance clinical responses.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Células A549 , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Epigênese Genética/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...