Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 091801, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489635

RESUMO

If dark matter is ultralight, the number density of dark matter is very high, and the techniques of zero-temperature field theory are no longer valid. The dark matter number density modifies the vacuum, giving it a non-negligible particle occupation number. For fermionic dark matter, this occupation number can be no larger than one. However, in the case of bosons, the occupation number is unbounded. If there is a large occupation number, the Bose enhancement needs to be taken into consideration for any process involving particles which interact with the dark matter. Because the occupation number scales inversely with the dark matter mass, this effect is most prominent for ultralight dark matter. In fact, the Bose enhancement effect from the background is so significant for ultralight dark matter that, if dark matter is a dark photon, the correction to the anomalous magnetic moment is larger than experimental uncertainties for a mixing parameter of the order of 10^{-16} and a dark photon mass of the order of 10^{-20} eV. Furthermore, the constraint on the mixing parameter scales linearly with the dark photon mass, and so new significant constraints can be placed on the dark matter mass all the way up to 10^{-14} eV. Future experiments measuring g-2 will probe even smaller gauge mixing parameters.

2.
Rep Prog Phys ; 82(11): 116201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31185458

RESUMO

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m. Neutral LLPs with lifetimes above [Formula: see text]100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.

3.
Eur Phys J C Part Fields ; 78(5): 425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996669

RESUMO

Stop coannihilation may bring the relic density of heavy supersymmetric dark matter particles into the range allowed by cosmology. The efficiency of this process is enhanced by stop-antistop annihilations into the longitudinal (Goldstone) modes of the W and Z bosons, as well as by Sommerfeld enhancement of stop annihilations and the effects of bound states. Since the couplings of the stops to the Goldstone modes are proportional to the trilinear soft supersymmetry-breaking A-terms, these annihilations are enhanced when the A-terms are large. However, the Higgs mass may be reduced below the measured value if the A-terms are too large. Unfortunately, the interpretation of this constraint on the stop coannihilation strip is clouded by differences between the available Higgs mass calculators. For our study, we use as our default calculator FeynHiggs 2.13.0, the most recent publicly available version of this code. Exploring the CMSSM parameter space, we find that along the stop coannihilation strip the masses of the stops are severely split by the large A-terms. This suppresses the Higgs mass drastically for µ and A 0 > 0 , whilst the extent of the stop coannihilation strip is limited for A 0 < 0 and either sign of µ . However, in sub-GUT models, reduced renormalization-group running mitigates the effect of the large A-terms, allowing larger LSP masses to be consistent with the Higgs mass calculation. We give examples where the dark matter particle mass may reach ≳ 8  TeV.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26766922

RESUMO

We consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale [Formula: see text]below the grand unification (GUT) scale [Formula: see text], a scenario referred to as 'sub-GUT'. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if [Formula: see text] is close to [Formula: see text], but it may lie within its reach if [Formula: see text] GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.

5.
Phys Rev Lett ; 109(18): 181801, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215270

RESUMO

We show that more than two generations of quarks and leptons are required to have an anomaly free discrete R symmetry larger than R parity, provided that the supersymmetric standard model can be minimally embedded into a grand unified theory. This connects an explanation for the number of generations with seemingly unrelated problems such as supersymmetry breaking, proton decay, the µ problem, and the cosmological constant through a discrete R symmetry. We also show that three generations is uniquely required by a nonanomalous discrete R symmetry in classes of grand unified theories such as the ones based on (semi)simple gauge groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...