Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Ambio ; 52(7): 1155-1169, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204668

RESUMO

Rapid climate and socioeconomic changes are transforming Arctic human-earth systems. An integral part of these systems is mobility, which encompasses the transport of humans and goods into, out of, and between Arctic regions. Impacts of climate and socioeconomic drivers on Arctic mobility are heterogenous. Methodologies are needed to quantify these impacts in measures that can be linked with broader socioeconomic systems. This article reviews existing methods and organizes them into a conceptual framework to understand trends and gaps in the literature. We found methods quantifying impacts of a range of climate drivers on most transportation modes present in the Arctic, but few methods focused on socioeconomic drivers. In addition, underrepresented were methods explicitly considering adaptive capacity of transportation systems. We provide insight into the data and relationships relevant to understanding impacts of Arctic change on transportation systems, laying a foundation for future work that investigates how these impacts fit into broader human-arth systems.


Assuntos
Mudança Climática , Clima , Humanos , Regiões Árticas , Fatores Socioeconômicos , Ecossistema
3.
J Clean Prod ; 256: 120489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34334967

RESUMO

This paper presents projections of global methane emissions from coal mining under different coal extraction scenarios and with increasing mining depth through 2100. The paper proposes an updated methodology for calculating fugitive emissions from coal mining, which accounts for coal extraction method, coal rank, and mining depth and uses evidence-based emissions factors. A detailed assessment shows that coal mining-related methane emissions in 2010 were higher than previous studies show. This study also uses a novel methodology for calculating methane emissions from abandoned coal mines and represents the first estimate of future global methane emissions from those mines. The results show that emissions from the growing population of abandoned mines increase faster than those from active ones. Using coal production data from six integrated assessment models, this study shows that by 2100 methane emissions from active underground mines increase by a factor of 4, while emissions from abandoned mines increase by a factor of 8. Abandoned mine methane emissions continue through the century even with aggressive mitigation actions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA