Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 10(9): 63, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552058

RESUMO

The Wnt signaling pathways play fundamental roles during both development and adult homeostasis. Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer, and is especially implicated in the development and progression of colorectal cancer. Although extensively studied, new genes, mechanisms and regulatory modulators involved in Wnt signaling activation or silencing are still being discovered. Here we applied a genome-scale CRISPR-Cas9 knockout (KO) screen based on Wnt signaling induced cell survival to reveal new inhibitors of the oncogenic, canonical Wnt pathway. We have identified several potential Wnt signaling inhibitors and have characterized the effects of the initiation factor DExH-box protein 29 (DHX29) on the Wnt cascade. We show that KO of DHX29 activates the Wnt pathway leading to upregulation of the Wnt target gene cyclin-D1, while overexpression of DHX29 inhibits the pathway. Together, our data indicate that DHX29 may function as a new canonical Wnt signaling tumor suppressor and demonstrates that this screening approach can be used as a strategy for rapid identification of novel Wnt signaling modulators.

2.
Sci Rep ; 7(1): 17995, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269789

RESUMO

Different cancer types as well as many other diseases are caused by aberrant activation of the canonical Wnt signal transduction pathway, and it is especially implicated in the development and progression of colorectal cancer (CRC). The main effector protein of the canonical Wnt signaling cascade is ß-catenin, which binds to the T- cell factor/lymphoid enhancer factor (TCF/LEF) and triggers the activation of Wnt target genes. Here, we identify the serine protease High-Temperature Requirement A1 (HTRA1) as a novel component of the canonical Wnt pathway. We show that the HTRA1 protein inhibits the Wnt/ß-catenin signaling, in both paracrine and autocrine manners, and affects the expression of several Wnt target genes. Moreover, HTRA1 forms a complex with ß-catenin and reduces the proliferation rates of cells. Taken together, our findings indicate that HTRA1 functions as a novel suppressor of the canonical Wnt signaling pathway.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A/fisiologia , Via de Sinalização Wnt/fisiologia , Western Blotting , Linhagem Celular , Imunofluorescência , Células HEK293 , Humanos , Imunoprecipitação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...