Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vopr Pitan ; 87(3): 18-29, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30592876

RESUMO

Yessotoxin and its derivatives (about 90) are isolated from algae belonging to the species Protoceratium reticulatum, Gonyaulax cf. Spinifera, Lingulodinium polyedrum and from invertebrate organisms that feed on these algae. Previously yessotoxin have been associated with the group of diarrheal toxins. Later studies of the possible impact of yessotoxin on the activity of alkaline phosphatase allowed to exclude them from this group. Yessotoxin causes a violation of calcium entry in the cells, which, in turn, effects the calcium-calmodulin system and thus influences into homeostasis of the organism as a whole. It was shown that yessotoxin induces a biphasic change in the concentration of adenosine monophosphate, an initial increase with a subsequent relative decrease, within some minutes after adding the toxin to the lymphocytes cell culture. Yessotoxin has effects on immune system; which is manifested in an increase of cytokines level, by inducing the expression of the genes encoding them. Yessotoxin have impact into processes of cell adhesion via E-cadherin and, thus, could be an important factor in the development of Alzheimer's disease. It has been established that yessotoxin caused the development of apoptosis. In those cases all three mechanisms of cell death took place - apoptosis, paraptosis and autophagy. Yessotoxin's acute toxicity doses according to different data are from 100 to 500-750 µg per 1kg of body weight. Yessotoxin's acute reference dose (ARfD) - 25 µg/kg of body weight per day. The results of the analysis of yessotoxin level in shellfish meat showed that none of the studied samples contained more than 3.75 mg yessotoxin equivalents/kg shellfish meat. This level has been adopted by the European Union as the maximum acceptable level of yessotoxin in shellfish meat (EU Regulation N 786/2013). Presented data on the mechanism of action, toxicity and prevalence of yessotoxins make it necessary to establish regulations of their content in seafood, placed on the markets of the Eurasian Economic Union.


Assuntos
Inocuidade dos Alimentos , Oxocinas/toxicidade , Saúde Pública , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/análise , Animais , Humanos , Venenos de Moluscos , Medição de Risco
2.
Vopr Pitan ; 86(1): 6-16, 2017.
Artigo em Russo | MEDLINE | ID: mdl-30645885

RESUMO

Rats and mice of different strains are used as a model of metabolic disturbances, caused by the consumption of diets with unbalanced content of macro-nutrients (fat, carbohydrate), as well as having elevated cholesterol quota. The aim of this study was to determine the magnitude and direction in change of vitamins status indices produced in rats and mice with experimental-mental hyperlipidemia, developing under consumption of high fat diet (HFD), fructose (Fr) and cholesterol (Cho). The experiment was conducted on 48 female growing Wistar rats with initial body weight 122±12 g, and 48 female growing C57Black/6 mice with initial body weight 18±1 g, which were divided into 12 groups of 8 animals per group. Within 63 days the rats and mice of the first (control) group received a balanced semi-synthetic (BD), 2nd groups - HFD with 30% of the total fat by weight of dry feed, 3rd groups - BD and Fr solution instead of water, 4th groups - HFD+Fr, 5th groups - BD supplemented with 0.5% Cho by weight of dry food, 6th groups - the same ration and Fr. After removal of animals from the experiment there were determined the content of vitamin A (retinol and retinol palmitate) and E (α-tocopherol) in blood plasma and liver by HPLC, 25-hydroxycholecalciferol [25(OH)D] in blood plasma by HPLC-MS, vitamins B1, B2 and oxidized NAD coenzymes in liver by fluorimetric methods. Consumption of HFD resulted in marked increase in the concentration of vitamin A by 32% and by 45% in rat blood plasma and in the mice liver respectively, elevation of vitamin E level by 46% in the rat liver. Unlike rats, vitamin E in the liver of mice treated with HFD was lower by 32% compared with the control. Cho additive resulted in increased vitamin E accumulation in rat and mice liver (α-tocopherol level was 2.5 и 1.5 fold higher than in control respectively). Convincing evidence wasn't revealed of the impact of the additional Fr on vitamins A and E safety in rats and mice. Consumption of Fr on background of HFD in rats significantly reduced the level of 25(OH)D compared with HFD without Fr. Fr reception in combination with the addition of Cho significantly reduced stores of vitamin A and increased - of vitamin E in the liver of rats and mice. 25(OH)D level for this type of diet was significantly reduced. Cho consumption in rats significantly decreased the content of NAD+NADP in the liver by 12%; the introduction of fructose into the diet neutralized this impact. Feeding rats with HFD resulted in a significant improvement, and uptake of Cho in reduce of vitamin B2 levels in the liver by 12.8 and 28%, respectively. Fr partially neutralized these effects. Thus, changes in the ratio of macronutrients and Cho in the diet of rats and mice may lead to a partially species-specific vitamin sufficiency variations, including in some cases the development of functional deficiency of vitamins А, B2, D and NAD coenzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...