Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Comb Sci ; 22(12): 796-803, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33211961

RESUMO

Desorption electrospray ionization-mass spectrometry (DESI-MS) was used as a high-throughput experimentation (HTE) tool to rapidly identify derivatives of the biobased platform molecule triacetic acid lactone (TAL). TAL is a platform molecule capable of conversion to a wide range of useful commodity chemicals, agrochemicals, and advanced pharmaceutical intermediates. In the present study, a diverse family of aldol reaction mixtures were prepared in high-density microtiter plates with a liquid handling robot, then printed with a pin tool onto a PTFE surface for analysis by DESI-MS. Our DESI-MS results indicate that aldol products of TAL were obtained for each substrate tested, in good agreement with previously reported TAL reactivity. These HTE experiments also revealed solvent-dependent reactivity trends that facilitated reaction scale up. Our findings suggest that DESI-MS analysis can rapidly inform the selection of optimal reaction conditions from a wide variety of conditions for scale up using continuous synthesis conditions.


Assuntos
Alcenos/síntese química , Técnicas de Química Sintética , Ensaios de Triagem em Larga Escala , Pironas/química , Alcenos/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
2.
Sci Rep ; 9(1): 14745, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611590

RESUMO

We demonstrate the use of accelerated reactions with desorption electrospray ionization mass spectrometry (DESI-MS) as a tool for predicting the outcome of microfluidic reactions. DESI-MS was employed as a high throughput experimentation tool to provide qualitative predictions of reaction outcomes, so that vast regions of chemical reactivity space may be more rapidly explored and areas of optimal efficiency identified. This work is part of a larger effort to accelerate reaction optimization to enable the rapid development of continuous-flow syntheses of small molecules in high yield. In order to build confidence in this approach, however, it is necessary to establish a robust predictive connection between reactions performed under analogous DESI-MS, batch, and microfluidic reaction conditions. In the present work, we explore the potential of high throughput DESI-MS experiments to identify trends in reactivity based on chemical structure, solvent, temperature, and stoichiometry that are consistent across these platforms. N-alkylation reactions were used as the test case due to their ease of reactant and product detection by electrospray ionization mass spectrometry (ESI-MS) and their great importance in API synthesis. While DESI-MS narrowed the scope of possibilities for reaction selection among some parameters such as solvent, others like stoichiometry and temperature still required further optimization under continuous synthesis conditions. DESI-MS high throughput experimentation (HTE) reaction evaluation significantly reduced the search space for flow chemistry optimization, thus representing a significant savings in time and materials to achieve a desired transformation with high efficiency.


Assuntos
Técnicas de Química Sintética/métodos , Microquímica/métodos , Técnicas Analíticas Microfluídicas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Alquilação , Compostos de Anilina/síntese química , Compostos de Anilina/química , Técnicas de Química Sintética/instrumentação , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Microquímica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...