Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(11): 5618-5633, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29718417

RESUMO

Human flap endonuclease-1 (hFEN1) catalyzes the divalent metal ion-dependent removal of single-stranded DNA protrusions known as flaps during DNA replication and repair. Substrate selectivity involves passage of the 5'-terminus/flap through the arch and recognition of a single nucleotide 3'-flap by the α2-α3 loop. Using NMR spectroscopy, we show that the solution conformation of free and DNA-bound hFEN1 are consistent with crystal structures; however, parts of the arch region and α2-α3 loop are disordered without substrate. Disorder within the arch explains how 5'-flaps can pass under it. NMR and single-molecule FRET data show a shift in the conformational ensemble in the arch and loop region upon addition of DNA. Furthermore, the addition of divalent metal ions to the active site of the hFEN1-DNA substrate complex demonstrates that active site changes are propagated via DNA-mediated allostery to regions key to substrate differentiation. The hFEN1-DNA complex also shows evidence of millisecond timescale motions in the arch region that may be required for DNA to enter the active site. Thus, hFEN1 regional conformational flexibility spanning a range of dynamic timescales is crucial to reach the catalytically relevant ensemble.


Assuntos
Endonucleases Flap/química , Domínio Catalítico , Cátions Bivalentes/química , DNA/química , DNA/metabolismo , Endonucleases Flap/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfatos/química , Conformação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
2.
Nat Chem Biol ; 12(10): 815-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27526030

RESUMO

The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the crystal structure of inhibitor-bound hFEN1, which shows a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein-substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the necessary unpairing of substrate DNA. Other compounds were more competitive with substrate. Cellular thermal shift data showed that both inhibitor types engaged with hFEN1 in cells, and activation of the DNA damage response was evident upon treatment with inhibitors. However, cellular EC50 values were significantly higher than in vitro inhibition constants, and the implications of this for exploitation of hFEN1 as a drug target are discussed.


Assuntos
Inibidores Enzimáticos/farmacologia , Endonucleases Flap/antagonistas & inibidores , Endonucleases Flap/metabolismo , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Endonucleases Flap/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Temperatura
3.
J Biol Chem ; 291(15): 8258-68, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26884332

RESUMO

Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.


Assuntos
DNA/metabolismo , Endonucleases Flap/metabolismo , Dicroísmo Circular , DNA/química , Reparo do DNA , Transferência Ressonante de Energia de Fluorescência , Humanos , Conformação de Ácido Nucleico , Especificidade por Substrato
4.
J Biol Chem ; 288(47): 34239-34248, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24126913

RESUMO

The prototypical 5'-nuclease, flap endonuclease-1 (FEN1), catalyzes the essential removal of single-stranded flaps during DNA replication and repair. FEN1 hydrolyzes a specific phosphodiester bond one nucleotide into double-stranded DNA. This specificity arises from double nucleotide unpairing that places the scissile phosphate diester on active site divalent metal ions. Also related to FEN1 specificity is the helical arch, through which 5'-flaps, but not continuous DNAs, can thread. The arch contains basic residues (Lys-93 and Arg-100 in human FEN1 (hFEN1)) that are conserved by all 5'-nucleases and a cap region only present in enzymes that process DNAs with 5' termini. Proline mutations (L97P, L111P, L130P) were introduced into the hFEN1 helical arch. Each mutation was severely detrimental to reaction. However, all proteins were at least as stable as wild-type (WT) hFEN1 and bound substrate with comparable affinity. Moreover, all mutants produced complexes with 5'-biotinylated substrate that, when captured with streptavidin, were resistant to challenge with competitor DNA. Removal of both conserved basic residues (K93A/R100A) was no more detrimental to reaction than the single mutation R100A, but much less severe than L97P. The ability of protein-Ca(2+) to rearrange 2-aminopurine-containing substrates was monitored by low energy CD. Although L97P and K93A/R100A retained the ability to unpair substrates, the cap mutants L111P and L130P did not. Taken together, these data challenge current assumptions related to 5'-nuclease family mechanism. Conserved basic amino acids are not required for double nucleotide unpairing and appear to act cooperatively, whereas the helical cap plays an unexpected role in hFEN1-substrate rearrangement.


Assuntos
Cálcio/química , DNA/química , Endonucleases Flap/química , Substituição de Aminoácidos , Cálcio/metabolismo , DNA/genética , DNA/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Prolina , Estrutura Secundária de Proteína
5.
Nucleic Acids Res ; 41(21): 9839-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975198

RESUMO

The structure- and strand-specific phosphodiesterase flap endonuclease-1 (FEN1), the prototypical 5'-nuclease, catalyzes the essential removal of 5'-single-stranded flaps during replication and repair. FEN1 achieves this by selectively catalyzing hydrolysis one nucleotide into the duplex region of substrates, always targeting the 5'-strand. This specificity is proposed to arise by unpairing the 5'-end of duplex to permit the scissile phosphate diester to contact catalytic divalent metal ions. Providing the first direct evidence for this, we detected changes induced by human FEN1 (hFEN1) in the low-energy CD spectra and fluorescence lifetimes of 2-aminopurine in substrates and products that were indicative of unpairing. Divalent metal ions were essential for unpairing. However, although 5'-nuclease superfamily-conserved active-site residues K93 and R100 were required to produce unpaired product, they were not necessary to unpair substrates. Nevertheless, a unique arrangement of protein residues around the unpaired DNA was detected only with wild-type protein, suggesting a cooperative assembly of active-site residues that may be triggered by unpaired DNA. The general principles of FEN1 strand and reaction-site selection, which depend on the ability of juxtaposed divalent metal ions to unpair the end of duplex DNA, may also apply more widely to other structure- and strand-specific nucleases.


Assuntos
DNA/metabolismo , Endonucleases Flap/química , 2-Aminopurina/química , Domínio Catalítico , DNA/química , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico
6.
Nucleic Acids Res ; 40(10): 4507-19, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319208

RESUMO

Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommodate single-stranded (ss) DNA, or the arch acts as a clamp. Here we show that free 5'-termini are selected using a disorder-thread-order mechanism. Adding short duplexes to 5'-flaps or 3'-streptavidin does not markedly impair the FEN reaction. In contrast, reactions of 5'-streptavidin substrates are drastically slowed. However, when added to premixed FEN and 5'-biotinylated substrate, streptavidin is not inhibitory and complexes persist after challenge with unlabelled competitor substrate, regardless of flap length or the presence of a short duplex. Cross-linked flap duplexes that cannot thread through the structured arch react at modestly reduced rate, ruling out mechanisms involving resolution of secondary structure. Combined results explain how FEN avoids cutting template DNA between Okazaki fragments and link local FEN folding to catalysis and specificity: the arch is disordered when flaps are threaded to confer specificity for free 5'-ends, with subsequent ordering of the arch to catalyze hydrolysis.


Assuntos
DNA/química , Endonucleases Flap/química , Sequência de Aminoácidos , Biocatálise , DNA/metabolismo , Endonucleases Flap/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estreptavidina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...