Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 212: 105574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905944

RESUMO

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Guanosina/farmacologia , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
2.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015168

RESUMO

There is a clear need for novel antiviral concepts to control SARS-CoV-2 infection. Based on the promising anti-coronavirus activity observed for a class of 1,4,4-trisubstituted piperidines, we here conducted a detailed analysis of the structure-activity relationship of these structurally unique inhibitors. Despite the presence of five points of diversity, the synthesis of an extensive series of analogues was readily achieved by Ugi four-component reaction from commercially available reagents. After evaluating 63 analogues against human coronavirus 229E, four of the best molecules were selected and shown to have micromolar activity against SARS-CoV-2. Since the action point was situated post virus entry and lying at the stage of viral polyprotein processing and the start of RNA synthesis, enzymatic assays were performed with CoV proteins involved in these processes. While no inhibition was observed for SARS-CoV-2 nsp12-nsp7-nsp8 polymerase, nsp14 N7-methyltransferase and nsp16/nsp10 2'-O-methyltransferase, nor the nsp3 papain-like protease, the compounds clearly inhibited the nsp5 main protease (Mpro). Although the inhibitory activity was quite modest, the plausibility of binding to the catalytic site of Mpro was established by in silico studies. Therefore, the 1,4,4-trisubstituted piperidines appear to represent a novel class of non-covalent CoV Mpro inhibitors that warrants further optimization and development.

3.
Nat Commun ; 13(1): 621, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110538

RESUMO

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Assuntos
Antivirais/química , Antivirais/farmacologia , Guanosina Monofosfato/análogos & derivados , Fosforamidas/química , Fosforamidas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/enzimologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Monofosfato/química , Guanosina Monofosfato/farmacologia , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas Virais/genética
4.
Molecules ; 27(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164317

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure-activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Compostos Heterocíclicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Células Vero
5.
Eur J Med Chem ; 224: 113683, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273661

RESUMO

The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 µM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 µM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.


Assuntos
Antivirais/química , Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Purinas/química , Purinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Terapia de Alvo Molecular , Replicação Viral/efeitos dos fármacos
6.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34075346

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

7.
J Virol Methods ; 288: 114013, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166547

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96 % aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug discovery against the SARS-CoV-2.


Assuntos
Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , RNA Viral , RNA Polimerase Dependente de RNA/metabolismo , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Antivirais/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Concentração Inibidora 50 , RNA Mensageiro/genética , Moldes Genéticos
8.
J Nat Prod ; 83(8): 2330-2336, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32686414

RESUMO

Thirteen carneic acids were isolated from the fungal endophyte Phomopsis sp. SNB-LAP1-7-32. Their structures were identified by mass spectrometry and extensive one- and two-dimensional NMR spectroscopy and through comparison with data reported in the literature. Compounds 1-13 were investigated for their antipolymerase activities against DENV polymerase and Zika NS5. Five of them exhibited significant inhibition of dengue polymerase with IC50 values in the 10 to 20 µM range without cytotoxicity. None inhibited Zika virus NS5 protein.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/enzimologia , Inibidores Enzimáticos/farmacologia , Phomopsis/química , Policetídeos/farmacologia , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Análise Espectral/métodos
9.
Antiviral Res ; 178: 104793, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283108

RESUMO

The rapid global emergence of SARS-CoV-2 has been the cause of significant health concern, highlighting the immediate need for antivirals. Viral RNA-dependent RNA polymerases (RdRp) play essential roles in viral RNA synthesis, and thus remains the target of choice for the prophylactic or curative treatment of several viral diseases, due to high sequence and structural conservation. To date, the most promising broad-spectrum class of viral RdRp inhibitors are nucleoside analogues (NAs), with over 25 approved for the treatment of several medically important viral diseases. However, Coronaviruses stand out as a particularly challenging case for NA drug design due to the presence of an exonuclease (ExoN) domain capable of excising incorporated NAs and thus providing resistance to many of these available antivirals. Here we use the available structures of the SARS-CoV RdRp and ExoN proteins, as well as Lassa virus N exonuclease to derive models of catalytically competent SARS-CoV-2 enzymes. We then map a promising NA candidate, GS-441524 (the active metabolite of Remdesivir) to the nucleoside active site of both proteins, identifying the residues important for nucleotide recognition, discrimination, and excision. Interestingly, GS-441524 addresses both enzyme active sites in a manner consistent with significant incorporation, delayed chain termination, and altered excision due to the ribose 1'-CN group, which may account for the increased antiviral effect compared to other available analogues. Additionally, we propose structural and function implications of two previously identified RdRp resistance mutations in relation to resistance against Remdesivir. This study highlights the importance of considering the balance between incorporation and excision properties of NAs between the RdRp and ExoN.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antimetabólitos/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Exorribonucleases/química , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antimetabólitos/química , Antivirais/química , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/metabolismo , COVID-19 , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , RNA-Polimerase RNA-Dependente de Coronavírus , Farmacorresistência Viral , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Modelos Moleculares , Mutação , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Conformação Proteica , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
10.
J Nat Prod ; 82(2): 330-340, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30681849

RESUMO

From a set of 292 Euphorbiaceae extracts, the use of a molecular networking (MN)-based prioritization approach highlighted three clusters (MN1-3) depicting ions from the bark extract of Codiaeum peltatum. Based on their putative antiviral potential and structural novelty, the MS-guided purification of compounds present in MN1 and MN2 afforded two new daphnane-type diterpenoid orthoesters (DDO), codiapeltines A (1) and B (2), the new actephilols B (3) and C (4), and four known 1,4-dioxane-fused phenanthrene dimers (5-8). The structures of the new compounds were elucidated by NMR spectroscopic data analysis, and the absolute configurations of compounds 1 and 2 were deduced by comparison of experimental and calculated ECD spectra. Codiapeltine B (2) is the first daphnane bearing a 9,11,13-orthoester moiety, establishing a new major structural class of DDO. Compounds 1-8 and four recently reported monoterpenyl quinolones (9-12) detected in MN3 were investigated for their selective activities against chikungunya virus replication and their antipolymerase activities against the NS5 proteins of dengue and zika viruses. Compounds 3-8 exhibited strong inhibitory activities on both dengue and zika NS5 in primary assays, but extensive biological analyses indicated that only actephilol B (3) displayed a specific interaction with the NS5 targets.


Assuntos
Antivirais/isolamento & purificação , Euphorbiaceae/química , Antivirais/química , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos
11.
Antiviral Res ; 163: 59-69, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639438

RESUMO

Alphaviruses such as the Venezuelan equine encephalitis virus (VEEV) are important human emerging pathogens transmitted by mosquitoes. They possess a unique viral mRNA capping mechanism catalyzed by the viral non-structural protein nsP1, which is essential for virus replication. The alphaviruses capping starts by the methylation of a GTP molecule by the N7-guanine methyltransferase (MTase) activity; nsP1 then forms a covalent link with m7GMP releasing pyrophosphate (GT reaction) and the m7GMP is next transferred onto the 5'-diphosphate end of the viral mRNA to form a cap-0 structure. The cap-0 structure decreases the detection of foreign viral RNAs, prevents RNA degradation by cellular exonucleases, and promotes viral RNA translation into proteins. Additionally, reverse-genetic studies have demonstrated that viruses mutated in nsP1 catalytic residues are both impaired towards replication and attenuated. The nsP1 protein is thus considered an attractive antiviral target for drug discovery. We have previously demonstrated that the guanylylation of VEEV nsP1 can be monitored by Western blot analysis using an antibody recognizing the cap structure. In this study, we developed a high throughput ELISA screening assay to monitor the GT reaction through m7GMP-nsP1 adduct quantitation. This assay was validated using known nsP1 inhibitors before screening 1220 approved compounds. 18 compounds inhibiting the nsP1 guanylylation were identified, and their IC50 determined. Compounds from two series were further characterized and shown to inhibit the nsP1 MTase activity. Conversely, these compounds barely inhibited a cellular MTase demonstrating their specificity towards nsP1. Analogues search and SAR were also initiated to identify the active pharmacophore features. Altogether the results show that this HT enzyme-based assay is a convenient way to select potent and specific hit compounds targeting the viral mRNA capping of Alphaviruses.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Chlorocebus aethiops , Aprovação de Drogas , Ensaio de Imunoadsorção Enzimática , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Capuzes de RNA , Células Vero , Replicação Viral/efeitos dos fármacos
12.
Antiviral Res ; 144: 330-339, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28676301

RESUMO

Two highly pathogenic human coronaviruses associated with severe respiratory syndromes emerged since the beginning of the century. The severe acute respiratory syndrome SARS-coronavirus (CoV) spread first in southern China in 2003 with about 8000 infected cases in few months. Then in 2012, the Middle East respiratory syndrome (MERS-CoV) emerged from the Arabian Peninsula giving a still on-going epidemic associated to a high fatality rate. CoVs are thus considered a major health threat. This is especially true as no vaccine nor specific therapeutic are available against either SARS- or MERS-CoV. Therefore, new drugs need to be identified in order to develop antiviral treatments limiting CoV replication. In this study, we focus on the nsp14 protein, which plays a key role in virus replication as it methylates the RNA cap structure at the N7 position of the guanine. We developed a high-throughput N7-MTase assay based on Homogenous Time Resolved Fluorescence (HTRF®) and screened chemical libraries (2000 compounds) on the SARS-CoV nsp14. 20 compounds inhibiting the SARS-CoV nsp14 were further evaluated by IC50 determination and their specificity was assessed toward flavivirus- and human cap N7-MTases. Our results reveal three classes of compounds: 1) molecules inhibiting several MTases as well as the dengue virus polymerase activity unspecifically, 2) pan MTases inhibitors targeting both viral and cellular MTases, and 3) inhibitors targeting one viral MTase more specifically showing however activity against the human cap N7-MTase. These compounds provide a first basis towards the development of more specific inhibitors of viral methyltransferases.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Fluorometria , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana
13.
Chem Biodivers ; 14(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27568476

RESUMO

Following a biological screening using a dengue replicon virus-cell-based assay, Diospyros carbonaria AcOEt extract was investigated, affording six known lupane-type triterpenoids endowed with anti-DENV-2 NS5 polymerase activity. The study of the associated microbial community of this species permitted us to identify 38 endophytes belonging to five different orders. Nine out of these 38 strains showed significant activity on the dengue replicon assay. The chemical investigation of the most active one, Phomopsis sp. SNB-LAP1-7-32, led to the isolation of betulinic acid, an anti-viral secondary metabolite isolated previously from the host plant. This result is the first example of a lupane-type triterpenoid isolated from both an endophyte and its host plant. Its presence in the Phomopsis strain may result from gene transfer and/or specific niche selection.


Assuntos
Ascomicetos/química , Diospyros/química , Triterpenos/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Endófitos/química , Triterpenos Pentacíclicos , Triterpenos/isolamento & purificação , Ácido Betulínico
14.
ACS Chem Biol ; 11(8): 2140-8, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27219844

RESUMO

Protein-protein interactions (PPIs) represent an enormous source of opportunity for therapeutic intervention. We and others have recently pinpointed key rules that will help in identifying the next generation of innovative drugs to tackle this challenging class of targets within the next decade. We used these rules to design an oriented chemical library corresponding to a set of diverse "PPI-like" modulators with cores identified as privileged structures in therapeutics. In this work, we purchased the resulting 1664 structurally diverse compounds and evaluated them on a series of representative protein-protein interfaces with distinct "druggability" potential using homogeneous time-resolved fluorescence (HTRF) technology. For certain PPI classes, analysis of the hit rates revealed up to 100 enrichment factors compared with nonoriented chemical libraries. This observation correlates with the predicted "druggability" of the targets. A specific focus on selectivity profiles, the three-dimensional (3D) molecular modes of action resolved by X-ray crystallography, and the biological activities of identified hits targeting the well-defined "druggable" bromodomains of the bromo and extraterminal (BET) family are presented as a proof-of-concept. Overall, our present study illustrates the potency of machine learning-based oriented chemical libraries to accelerate the identification of hits targeting PPIs. A generalization of this method to a larger set of compounds will accelerate the discovery of original and potent probes for this challenging class of targets.


Assuntos
Descoberta de Drogas , Proteínas/química , Bibliotecas de Moléculas Pequenas , Cristalografia por Raios X , Mapeamento de Interação de Proteínas
15.
Fitoterapia ; 112: 9-15, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27126897

RESUMO

A screening using a dengue replicon virus-cell-based assay was performed on 3563 ethyl acetate (EtOAc) extracts from different parts of 1500 plants. The screening led to the selection of species from the genus Diospyros (Ebenaceae), among which 25 species distributed in tropical areas showed significant inhibitory activity on dengue virus replication. A metabolic analysis was conducted from the UPLC-HRMS profiles of 33 biologically active and inactive plant extracts, and their metabolic proximity is presented in the form of a dendrogram. The results of the study showed that chemical similarity is not related to plant species or organ. Overall, metabolomic profiling allowed us to define large groups of extracts, comprising both active and inactive ones. Closely related profiles from active extracts might indicate that the common major components of these extracts were responsible for the antiviral activity, while the comparison of chemically similar active and inactive extracts, will permit to find compounds of interest. Eventually, the phytochemical investigation of Diospyros glans bark EtOAc extract afforded usnic acid and 7 known ursane- and lupane-type triterpenoids, among which 5 were found significantly active against dengue virus replication. The inhibitory potency of these compounds was also evaluated on a DENV-NS5 RNA-dependant RNA polymerase assay.


Assuntos
Antivirais/química , Vírus da Dengue/efeitos dos fármacos , Diospyros/química , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Benzofuranos/química , Benzofuranos/isolamento & purificação , Células COS , Chlorocebus aethiops , Vírus da Dengue/fisiologia , Metaboloma , Casca de Planta/química , Extratos Vegetais/química , Triterpenos/química , Triterpenos/isolamento & purificação
16.
Eur J Med Chem ; 109: 146-56, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774922

RESUMO

Using a functional high-throughput screening (HTS) and subsequent SAR studies, we have discovered a novel series of non-nucleoside dengue viral polymerase inhibitors. We report the elaboration of SAR around hit compound 1 as well as the synthesis and antiviral evaluation of 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole and 5-phenyl-2-[2-(2-thienyl)ethenyl]-1,3,4-oxadiazole analogues derived from a rapid and easily accessible chemical pathway. A large number of compounds prepared by this method were shown to possess in vitro activity against the polymerase of dengue virus. The most potent inhibitors were tested against Dengue virus clinical isolates on infected cells model and exhibit submicromolar activity on the four dengue virus serotypes.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Oxidiazóis/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Linhagem Celular , Dengue/virologia , Vírus da Dengue/enzimologia , Humanos , Oxidiazóis/química , RNA Polimerase Dependente de RNA/metabolismo , Tiofenos/química , Tiofenos/farmacologia , Proteínas não Estruturais Virais/metabolismo
17.
Planta Med ; 79(14): 1313-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23929244

RESUMO

Dengue virus is the world's most prevalent human pathogenic arbovirus. There is currently no treatment or vaccine, and solutions are urgently needed. We previously demonstrated that biflavonoids from Dacrydium balansae, an endemic gymnosperm from New Caledonia, are potent inhibitors of the Dengue virus NS5 RNA-dependent RNA polymerase. Herein we describe the structure-activity relationship study of 23 compounds: biflavonoids from D. balansae (1-4) and from D. araucarioides (5-10), hexamethyl-amentoflavone (11), cupressuflavone (12), and apigenin derivatives (13-23). We conclude that 1) over the four different biflavonoid skeletons tested, amentoflavone (1) and robustaflavone (5) are the most promising ones for antidengue drug development, 2) the number and position of methyl groups on the biflavonoid moiety modulate their inhibition of Dengue virus NS5 RNA-dependent RNA polymerase, and 3) the degree of oxygenation of flavonoid monomers influences their antidengue potential. Sotetsuflavone (8), with an IC50 = 0.16 µM, is the most active compound of this series and is the strongest inhibitor of the Dengue virus NS5 RNA-dependent RNA polymerase described in the literature.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , RNA Viral/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Traqueófitas/química , Antivirais/química , Vírus da Dengue/enzimologia , Vírus da Dengue/genética , Flavonoides/química , Concentração Inibidora 50 , Nova Caledônia , Extratos Vegetais/química , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
18.
Phytochemistry ; 84: 160-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22938995

RESUMO

The chemical study of the bark and the wood of Trigonostemon cherrieri, a rare endemic plant of New Caledonia, led to the isolation of a series of highly oxygenated daphnane diterpenoid orthoesters (DDO) bearing an uncommon chlorinated moiety: trigocherrins A-F and trigocherriolides A-D. Herein, we describe the isolation and structure elucidation of the DDO (trigocherrins B-F and trigocherriolides A-D). We also report the antiviral activity of trigocherrins A, B and F (1, 2 and 6) and trigocherriolides A, B and C (7-9) against various emerging pathogens: chikungunya virus (CHIKV), Sindbis virus (SINV), Semliki forest virus (SFV) and dengue virus (DENV).


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Euphorbiaceae/química , Vírus da Floresta de Semliki/efeitos dos fármacos , Sindbis virus/efeitos dos fármacos , Antivirais/química , Antivirais/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Ésteres/química , Ésteres/isolamento & purificação , Ésteres/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Casca de Planta/química , Madeira/química
19.
Fitoterapia ; 83(6): 1076-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22613073

RESUMO

In an effort to identify novel inhibitors of Chikungunya (CHIKV) and Dengue (DENV) virus replication, a systematic study with 820 ethyl acetate extracts of Madagascan plants was performed in a virus-cell-based assay for CHIKV and a DENV NS5 RNA-dependant RNA polymerase (RdRp) assay. The extract obtained from the leaves of Anacolosa pervilleana was selected for its significant activity in both assays. One new (E)-tridec-2-en-4-ynedioic acid named anacolosine (1), together with three known acetylenic acids, the octadeca-9,11,13-triynoic acid (2), (13E)-octadec-13-en-9,11-diynoic acid (3), (13E)-octadec-13-en-11-ynoic acid (4), two terpenoids, lupenone (5) and ß-amyrone (6), and one cyanogenic glycoside, (S)-sambunigrin (7) were isolated. Their structures were elucidated by comprehensive analyses of NMR spectroscopy and mass spectrometry data. The inhibitory potency of these compounds was evaluated on CHIKV, DENV RdRp and West-Nile polymerase virus (WNV RdRp). Both terpenoids showed a moderate activity against CHIKV (EC(50) 77 and 86 µM, respectively) and the acetylenic acids produced IC(50) values around 3 µM in the DENV RdRp assay.


Assuntos
Antivirais/uso terapêutico , Vírus Chikungunya/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Olacaceae/química , Fitoterapia , Infecções por Vírus de RNA/tratamento farmacológico , Vírus do Nilo Ocidental/efeitos dos fármacos , Alcinos/isolamento & purificação , Alcinos/farmacologia , Alcinos/uso terapêutico , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , Chlorocebus aethiops , RNA Polimerases Dirigidas por DNA/metabolismo , Concentração Inibidora 50 , Madagáscar , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Células Vero
20.
J Nat Prod ; 75(4): 752-8, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22439591

RESUMO

In an effort to identify novel inhibitors of chikungunya (CHIKV) and dengue (DENV) virus replication, a systematic study with 820 ethyl acetate extracts of madagascan plants was performed in a virus-cell-based assay for CHIKV, and a DENV NS5 RNA-dependent RNA polymerase (RdRp) assay. The extract obtained from the stem bark of Flacourtia ramontchi was selected for its significant activity in both assays. Six new phenolic glycosides, named flacourtosides A-F (1-6), phenolic glycosides itoside H, xylosmin, scolochinenoside D, and poliothrysoside, and betulinic acid 3ß-caffeate were obtained using the bioassay-guided isolation process. Their structures were elucidated by comprehensive analyses of NMR spectroscopic and mass spectrometric data. Even though several extracts and fractions showed significant selective antiviral activity in the CHIKV virus-cell-based assay, none of the purified compounds did. However, in the DENV RNA polymerase assay, significant inhibition was observed with betulinic acid 3ß-caffeate (IC(50) = 0.85 ± 0.1 µM) and to a lesser extent for the flacourtosides A and E (1 and 5, respectively), and scolochinenoside D (IC(50) values ~10 µM).


Assuntos
Antivirais/isolamento & purificação , Glicosídeos/isolamento & purificação , Fenóis/isolamento & purificação , Salicaceae/química , Antivirais/química , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Dengue/efeitos dos fármacos , Glicosídeos/química , Glicosídeos/farmacologia , Concentração Inibidora 50 , Madagáscar , Ressonância Magnética Nuclear Biomolecular , Fenóis/química , Fenóis/farmacologia , Casca de Planta/química , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...