Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Mol Oncol ; 16(19): 3490-3508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35593080

RESUMO

Despite the initial efficacy of using tyrosine kinase inhibitors of epidermal growth factor receptors (EGFR-TKIs) for treating patients with non-small cell lung cancer (NSCLC), resistance inevitably develops. Recent studies highlight a link between alternative splicing and cancer drug response. Therefore, we aimed to identify deregulated splicing events that play a role in resistance to EGFR-TKI. By using RNA sequencing, reverse-transcription PCR (RT-PCR), and RNA interference, we showed that overexpression of a splice variant of the autophagic gene ATG16-L1 that retains exon 8 and encodes the ß-isoform of autophagy-related protein 16-1 (ATG16-L1 ß) concurs acquired resistance to EGFR-TKI in NSCLC cells. Using matched biopsies, we found increased levels of ATG16-L1 ß at the time of progression in 3 of 11 NSCLC patients treated with EGFR-TKI. Mechanistically, gefitinib-induced autophagy was impaired in resistant cells that accumulated ATG16-L1 ß. Neutralization of ATG16-L1 ß restored autophagy in response to gefitinib, induced apoptosis, and inhibited the growth of in ovo tumor xenografts. Conversely, overexpression of ATG16-L1 ß in parental sensitive cells prevented gefitinib-induced autophagy and increased cell survival. These results support a role of defective autophagy in acquired resistance to EGFR-TKIs and identify splicing regulation of ATG16-L1 as a therapeutic vulnerability that could be explored for improving EGFR-targeted cancer therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Autofagia , Proteínas Relacionadas à Autofagia/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Família de Proteínas EGF/farmacologia , Família de Proteínas EGF/uso terapêutico , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Biochim Biophys Acta Mol Cell Res ; 1869(7): 119253, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259425

RESUMO

Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients. In this review, we firstly discuss bFGF's canonical signaling pathways and later review newly identified bFGF's functions that contribute to the cancer hallmarks besides its typical role in angiogenesis. After, we summarize the role of bFGF as a therapeutic target in response to different cancer therapies including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and highlight the difficulties we must solve regarding the design of drugs targeting specifically bFGF. We also emphasize the need, especially for natural bFGF traps, to deepen their molecular mechanisms of action considering the specific context of cancer with different FGFR status, as well as the urgence of stratifying patients for both anti-bFGF first line and second line anti-cancer therapy. Finally, a perspective on potential feed-forward oncogenic signaling pathways mediated by bFGF is made. We discuss the importance of developing additional robust biomarkers to select patients who will benefit from bFGF-targeted therapy, as well as the rationale of developing combinatory therapies targeting either bFGF and/or its intracellular (co)effectors. This would ultimately provide novel therapeutic strategies to fight cancer.


Assuntos
Neoplasias , Terapia Combinada , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais
5.
BMC Biol ; 19(1): 173, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433435

RESUMO

BACKGROUND: Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. RESULTS: By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. CONCLUSIONS: We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias Pulmonares , Animais , Células Endoteliais , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Neovascularização Patológica/genética , Proteínas Serina-Treonina Quinases , Precursores de RNA , Fatores de Processamento de Serina-Arginina/genética , Peixe-Zebra/genética
7.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445812

RESUMO

The synthesis of silica nanoparticles (SiNPs) decorated on their surface with a range of various elements (e.g., ligands, drugs, fluorophores, vectors, etc.) in a controlled ratio remains a big challenge. We have previously developed an efficient strategy to obtain in one-step, well-defined multifunctional fluorescent SiNPs displaying fluorophores and two peptides ligands as targeting elements, allowing selective detection of cancer cells. In this paper, we demonstrate that additional level of controlled multifunctionality can be achieved, getting even closer to the original concept of "magic bullet", using solely sol-gel chemistry to achieve conjugation of PEG chains for stealth, along with three different ligands. In addition, we have answered the recurrent question of the surface ungrafting by investigating the stability of different siloxane linkages with the ERETIC Method (Electronic Reference to Access In Vivo Concentrations) by 19F NMR quantification. We also compared the efficiency of the hybrid silylated fluorophore covalent linkage in the core of the SiNP to conventional methods. Finally, the tumor-cell-targeting efficiency of these multi-ligand NPs on human endothelial cells (HUVEC or HDMEC) and mixed spheroids of human melanoma cells and HUVEC displaying different types of receptors were evaluated in vitro.

8.
Biochem Pharmacol ; 189: 114039, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32417188

RESUMO

Pre-mRNA splicing is the removal of introns and ligation of exons to form mature mRNAs, and it provides a critical mechanism by which eukaryotic cells can regulate their gene expression. Strikingly, more than 90% of protein-encoding transcripts are alternatively spliced, through exon inclusion/skipping, differential use of 5' or 3' alternative splice sites, intron retention or selection of an alternative promoter, thereby drastically increasing protein diversity. Splicing is altered in various pathological conditions, including cancers. In the last decade, high-throughput transcriptomic analyses have identified thousands of splice variants in cancers, which can distinguish between tumoral and normal tissues as well as identify tumor types, subtypes and clinical stages. These abnormal or aberrantly expressed splice variants, found in all cancer hallmarks, can result from mutations in splice sites, deregulated expression or even somatic mutations of components of the spliceosome machinery. Therefore, and based on these recent observations, a new anti-cancer strategy of targeting the spliceosome machinery with small molecules has emerged; however, the potential for these therapies is still a matter of great debate. Notably, more preclinical studies are needed to clarify which splicing patterns are mainly affected by these compounds, which cancer patients could be the most eligible for these treatments and whether using these spliceosome inhibitors alone or in combination with chemotherapies or targeted therapies would provide better therapeutic benefits. In this commentary, I will discuss all of these aspects.


Assuntos
Sistemas de Liberação de Medicamentos , Terapia Genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/fisiologia , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Humanos , Macrolídeos/administração & dosagem , Macrolídeos/metabolismo , Neoplasias/genética , Piperazinas/administração & dosagem , Piperazinas/metabolismo , Piridinas/administração & dosagem , Piridinas/metabolismo , Spliceossomos/efeitos dos fármacos , Spliceossomos/genética
9.
Matrix Biol ; 94: 18-30, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32682018

RESUMO

Type V collagen (ColV) is a component of the endothelial basement membrane zone. During angiogenesis, extracellular matrix remodelling results in the release of active protein fragments that display pro- or anti-angiogenic properties. The latter often exert their activity through their heparin-binding site. We previously characterized a ColVα1-derived fragment called HEPV that contains a high affinity-binding site for heparin and heparan sulphate chains. Here we show that HEPV binds to FGF2 through its heparin-binding site. Using in vitro and in vivo angiogenesis assays, we show that HEPV but not the HEPV mutant at the heparin-binding site, inhibits FGF2-dependant angiogenesis. On the opposite, HEPV does not bind to VEGFA and has no effect on VEGFA-mediated angiogenesis. In 3D collagen gels, the addition of HEPV abrogates endothelial cell invasion and sprouting induced by FGF2. Interestingly, in vivo experiments reveal that HEPV anti-angiogenic activity is associated with the appearance of endothelial to mesenchymal transition (EndMT) markers. Together, these findings indicate that the ColVα1-derived fragment HEPV functions as an anti-angiogenic factor that represses FGF2-mediated angiogenesis through the regulation of endothelial cell plasticity. Previous observations showing that ColV overexpression negatively regulates pathological angiogenesis were left unexplained. Our data provide insights into the possible molecular mechanisms.


Assuntos
Colágeno Tipo V/genética , Fator 2 de Crescimento de Fibroblastos/genética , Morfogênese/genética , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Sequência de Aminoácidos/genética , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Plasticidade Celular/genética , Células Endoteliais/efeitos dos fármacos , Heparina/genética , Heparitina Sulfato/genética , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Morfogênese/efeitos dos fármacos , Neovascularização Patológica/patologia , Ligação Proteica/genética
13.
Int J Pharm ; 568: 118507, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299336

RESUMO

Covering the surface of a nanoparticle with polyethylene glycol (PEG) is a common way to prevent non-specific interactions but how its presence impacts on the activity of targeting ligands is still poorly documented. We synthesized a set of 9 silica nanoparticles grafted with c[RGDfK]-, a peptide targeting integrin αvß3 (cRGD), and/or with ATWLPPR, an anti-neuropilin 1 peptide (ATW). We then added various PEGs, and studied NPs binding on primary endothelial cells, the downstream activated signaling pathways and the impact on apoptosis. Our results show that the presence of PEG2000 on cRGD/ATW nanoparticles moderately improves cell binding but induces a 6000 times augmentation of AKT-dependent cell response due to the recruitment of other Receptor Tyrosine Kinases. Augmenting the length of the spacer that separates the peptides from the silica (using PEG3000) mainly resulted in a loss of specificity. Finally, the PEG-mediated hyperactivation of AKT did not protect endothelial cell from dying in the absence of serum, while its moderate activation obtained without PEG did. Finally, PEGylation of cRGD/ATW-NPs can generate nanoparticles with potent capacities to activate the AKT-GSK3ß-eNOS cascade and to affect the resistance of endothelial cells to apoptosis. Thus, the impact of PEGylation should be precisely considered in order to avoid the apparition of counter-productive biological responses.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas/administração & dosagem , Oligopeptídeos/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Dióxido de Silício/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Nanopartículas/química , Óxido Nítrico Sintase Tipo III/metabolismo , Oligopeptídeos/química , Peptídeos Cíclicos/química , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química
14.
Front Genet ; 10: 390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134126

RESUMO

Lung cancer, including non-small cell lung carcinoma (NSCLC), is the most frequently diagnosed cancer. It is also the leading cause of cancer-related mortality worldwide because of its late diagnosis and its resistance to therapies. Therefore, the identification of biomarkers for early diagnosis, prognosis, and monitoring of therapeutic response is urgently needed. Liquid biopsies, especially blood, are considered as promising tools to detect and quantify circulating cancer biomarkers. Cell-free circulating tumor DNA has been extensively studied. Recently, the possibility to detect and quantify RNAs in tumor biopsies, notably circulating cell-free RNAs, has gained great attention. RNA alternative splicing contributes to the proteome diversity through the biogenesis of several mRNA splice variants from the same pre-mRNA. Circular RNA (circRNA) is a new class of RNAs resulting from pre-mRNA back splicing. Owing to the development of high-throughput transcriptomic analyses, numerous RNA splice variants and, more recently, circRNAs have been identified and found to be differentially expressed in tumor patients compared to healthy controls. The contribution of some of these RNA splice variants and circRNAs to tumor progression, dissemination, or drug response has been clearly demonstrated in preclinical models. In this review, we discuss the potential of circRNAs and mRNA splice variants as candidate biomarkers for the prognosis and the therapeutic response of NSCLC in liquid biopsies.

15.
Sci Rep ; 9(1): 336, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674935

RESUMO

The splice variant sVEGFR1-i13 is a truncated version of the cell membrane-spanning VEGFR1 receptor that is devoid of its transmembrane and tyrosine kinase domains. We recently showed the contribution of sVEGFR1-i13 to the progression and the response of squamous lung carcinoma to anti-angiogenic therapies. In this study, we identify VEGF165, a splice variant of VEGF-A, as a regulator of sVEGFR1-i13 expression in these tumors, and further show that VEGF165 cooperates with the transcription factor SOX2 and the splicing factor SRSF2 to control sVEGFR1-i13 expression. We also demonstrate that anti-angiogenic therapies up-regulate sVEGFR1-i13 protein level in squamous lung carcinoma cells by a mechanism involving the VEGF165/SOX2/SRSF2 network. Collectively, our results identify for the first time a signaling network that controls VEGFR1 pre-mRNA alternative splicing in cancer cells.


Assuntos
Processamento Alternativo , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Fatores de Transcrição SOXB1/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Humanos , Precursores de RNA/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
16.
Oncogene ; 38(7): 1050-1066, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194450

RESUMO

Vascular endothelial growth factor-A (VEGF-A) is highly subjected to alternative pre-mRNA splicing that generates several splice variants. The VEGFxxx and VEGFxxxb families encode splice variants of VEGF-A that differ only at the level of six amino acids in their C-terminal part. The expression level of VEGFxxx splice variants and their function as pro-angiogenic factors during tumor neo-angiogenesis have been well-described. The role of VEGFxxxb isoforms is less well known, but they have been shown to inhibit VEGFxxx-mediated angiogenesis, while being partial or weak activators of VEGFR receptors in endothelial cells. On the opposite, their role on tumor cells expressing VEGFRs at their surface remains largely unknown. In this study, we find elevated levels of VEGF165b, the main VEGFxxxb isoform, in 36% of non-small cell lung carcinoma (NSCLC), mainly lung adenocarcinoma (46%), and show that a high VEGF165b/VEGF165 ratio correlates with the presence of lymph node metastases. At the molecular level, we demonstrate that VEGF165b stimulates proliferation and invasiveness of two lung tumor cell lines through a VEGFR/ß1 integrin loop. We further provide evidence that the isoform-specific knockdown of VEGF165b reduces tumor growth, demonstrating a tumor-promoting autocrine role for VEGF165b in lung cancer cells. Importantly, we show that bevacizumab, an anti-angiogenic compound used for the treatment of lung adenocarcinoma patients, increases the expression of VEGF165b and activates the invasive VEGFR/ß1 integrin loop. Overall, these data highlight an unexpected role of the VEGF165b splice variant in the progression of lung tumors and their response to anti-angiogenic therapies.


Assuntos
Processamento Alternativo , Comunicação Autócrina/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Integrina beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Integrina beta1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Neoplasias/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
17.
Exp Cell Res ; 370(2): 264-272, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959911

RESUMO

Epidermal Growth Factor Receptor (EGFR) signaling regulates multiple cellular processes including proliferation, survival and apoptosis, and is attenuated by lysosomal receptor degradation. EGFR is a potent oncogene and activating mutations of EGFR are critical determinants of oncogenic transformation as well as therapeutic targets in non-small cell lung cancer. We previously demonstrated that wild type and mutant EGFRs repress the expression of the ARF tumor suppressor to promote the survival of lung tumor cells. In this study, using transient transfection systems in CHO EGFR-null cells as well as in various lung tumor cell lines carrying wild type or activated mutant EGFR, we show that ARF downregulates the expression of EGFR protein by reducing its half life. In wild type EGFR cells, ARF promotes canonical lysosomal degradation of the receptor through enhanced phosphorylation of EGFR-Y1045 and Cbl-Y731. In contrast, in mutant EGFR cells, ARF induces EGFR degradation by activating a non-canonical AKT-dependent lysosomal pathway. Taken together, these results uncover a feedback loop by which ARF may control EGFR turnover to restrain oncogenic signaling. They also highlight distinct degradation promoting pathways between wild type and mutant EGFRs in response to ARF.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Fator de Crescimento Epidérmico/genética , Lisossomos/metabolismo , Fases de Leitura/genética , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Lisossomos/genética , Mutação/genética , Fosforilação , Transdução de Sinais/fisiologia
18.
Br J Cancer ; 118(12): 1596-1608, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795310

RESUMO

BACKGROUND: While lung adenocarcinoma patients can somewhat benefit from anti-angiogenic therapies, patients with squamous cell lung carcinoma (SQLC) cannot. The reasons for this discrepancy remain largely unknown. Soluble VEGF receptor-1, namely sVEGFR1-i13, is a truncated splice variant of the cell membrane-spanning VEGFR1 that has no transmembrane or tyrosine kinase domain. sVEGFR1-i13 is mainly viewed as an anti-angiogenic factor which counteracts VEGF-A/VEGFR signalling in endothelial cells. However, its role in tumour cells is poorly known. METHODS: mRNA and protein status were analysed by Real-Time qPCR, western blotting, ELISA assay, proximity ligation assay or immunohistochemistry in human tumour cell lines, murine tumourgrafts and non small cell lung carcinoma patients samples. RESULTS: We show that anti-angiogenic therapies specifically increase the levels of sVEGFR1-i13 in SQLC cell lines and chemically induced SQLC murine tumourgrafts. At the molecular level, we characterise a sVEGFR1-i13/ß1 integrin/VEGFR autocrine loop which determines whether SQLC cells proliferate or go into apoptosis, in response to anti-angiogenic therapies. Furthermore, we show that high levels of both sVEGFR1-i13 and ß1 integrin mRNAs and proteins are associated with advanced stages in SQLC patients and with a poor clinical outcome in patients with early stage SQLC. CONCLUSIONS: Overall, these results reveal an unexpected pro-tumoural function of sVEGFR1-i13 in SQLC tumour cells, which contributes to their progression and escape from anti-angiogenic therapies. These data might help to understand why some SQLC patients do not respond to anti-angiogenic therapies.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Integrina beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Comunicação Autócrina/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Isoformas de Proteínas , Receptor Cross-Talk/efeitos dos fármacos , Células Tumorais Cultivadas , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Lett ; 420: 146-155, 2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29421153

RESUMO

Many Receptor Tyrosine Kinases translocate from the cell surface to the nucleus in normal and pathological conditions, including cancer. Here we report the nuclear expression of insulin-like growth factor-1 receptor (IGF1R) in primary human lung tumours. Using lung cancer cell lines and lung tumour xenografts, we demonstrate that the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib induces the nuclear accumulation of IGF1R in mucinous lung adenocarcinoma by a mechanism involving the intracellular re-localization of the growth factor amphiregulin. Amphiregulin allows the binding of IGF1R to importin-ß1 and promotes its nuclear transport. The nuclear accumulation of IGF1R by amphiregulin induces cell cycle arrest through p21WAF1/CIP1 upregulation, and prevents the induction of apoptosis in response to gefitinib. These results identify amphiregulin as the first nuclear localization signal-containing protein that interacts with IGF1R and allows its nuclear translocation. Furthermore they indicate that nuclear expression of IGF1R contributes to EGFR-TKI resistance in lung cancer.


Assuntos
Adenocarcinoma Mucinoso/metabolismo , Anfirregulina/metabolismo , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Receptores de Somatomedina/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Gefitinibe/farmacologia , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Receptor IGF Tipo 1 , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomaterials ; 155: 64-79, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29169039

RESUMO

Angiogenesis strongly depends on the activation of integrins, especially integrin αvß3, and of neuropilin-1 (NRP-1), a co-receptor of VEGFR2. Dual-targeted molecules that simultaneously block both of them are expected have increased anti-angiogenic and antitumor activity. Toward this goal, we generated bifunctional 40 nm-sized silica nanoparticles (NPs) coated with controlled amounts of cRGD and ATWLPPR peptides and studied their affinity, selectivity and biological activity in HUVECs. Sub-nanomolar concentrations of NPs grafted either with ATWLPPR alone or in combination with cRGD exhibit potent and specific antagonist activity against VEGFR2/AKT signaling. However, a 1 nM concentration of the cRGD/ATWLPPR-heteromultivalent particles (RGD/ATW-NPs) also blocks the phosphorylation of VEGFR2 while co-inducing an unexpected long-lasting activation of AKT via IGF-1R/IR-AKT/GSK3ß/eNOS signaling that stimulates cell survival and abrogates the intrinsic toxicity of silica-NPs to serum-starved HUVECs. We also showed that their repeated intravenous administration was associated with the proliferation of human U87MG tumor cells engrafted in nude mice and a dilatation of the tumor blood vessels. We present biochemical evidence for the complex cross-talk generated by the binding of the heteromultivalent NPs with αvß3-integrin and with NRP1. In particular, we show for the first time that such heteromultivalent NPs can trans-activate IGF-1/insulin receptors and exert dose-dependent pro-survival activity. This study demonstrates the difficulties in designing targeted silica-based NPs for antiangiogenic therapies and the possible risks posed by undesirable side effects.


Assuntos
Integrina alfaVbeta3/metabolismo , Neuropilina-1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/química , Oligopeptídeos/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...