Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052834

RESUMO

Understanding the degradation mechanism of organic light-emitting diodes (OLED) is essential to improve device performance and stability. OLED failure, if not process-related, arises mostly from chemical instability. However, the challenges of sampling from nanoscale organic layers and interfaces with enough analytical information has hampered identification of degradation products and mechanisms. Here, we present a high-resolution diagnostic method of OLED degradation using an Orbitrap mass spectrometer equipped with a gas cluster ion beam to gently desorb nanometre levels of materials, providing unambiguous molecular information with 7-nm depth resolution. We chemically depth profile and analyse blue phosphorescent and thermally-activated delayed fluorescent (TADF) OLED devices at different degradation levels. For OLED devices with short operational lifetimes, dominant chemical degradation mainly relate to oxygen loss of molecules that occur at the interface between emission and electron transport layers (EML/ETL) where exciton distribution is maximised, confirmed by emission zone measurements. We also show approximately one order of magnitude increase in lifetime of devices with slightly modified host materials, which present minimal EML/ETL interfacial degradation and show the method can provide insight for future material and device architecture development.

2.
Anal Chem ; 95(40): 15078-15085, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37715701

RESUMO

Quantitative analysis of binary mixtures of tris(2-phenylpyridinato)iridium(III) (Ir(ppy)3) and tris(8-hydroxyquinolinato)aluminum (Alq3) by using an artificial neural network (ANN) system to mass spectra was attempted based on the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study (TW2 A31) to evaluate matrix-effect correction and to investigate interface determination. Monolayers of binary mixtures having different Ir(ppy)3 ratios (0, 0.25, 0.50, 0.75, and 1.00), and the multilayers containing these mixtures and pure samples were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with different primary ion beams, OrbiSIMS (SIMS with both Orbitrap and ToF mass spectrometers), laser desorption ionization (LDI), desorption/ionization induced by neutral clusters (DINeC), and X-ray photoelectron spectroscopy (XPS). The mass spectra were analyzed using a simple ANN with one hidden layer. The Ir(ppy)3 ratios of the unknown samples and the interfaces of the multilayers were predicted using the simple ANN system, even though the mass spectra of binary mixtures exhibited matrix effects. The Ir(ppy)3 ratios at the interfaces indicated by the simple ANN were consistent with the XPS results and the ToF-SIMS depth profiles. The simple ANN system not only provided quantitative information on unknown samples, but also indicated important mass peaks related to each molecule in the samples without a priori information. The important mass peaks indicated by the simple ANN depended on the ionization process. The simple ANN results of the spectra sets obtained by a softer ionization method, such as LDI and DINeC, suggested large ions such as trimers. From the first step of the investigation to build an ANN model for evaluating mixture samples influenced by matrix effects, it was indicated that the simple ANN method is useful for obtaining candidate mass peaks for identification and for assuming mixture conditions that are helpful for further analysis.

3.
J Am Soc Mass Spectrom ; 34(7): 1272-1282, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37317808

RESUMO

This paper describes the development and initial results from a secondary ion mass spectrometer coupled with microscope mode detection. Stigmatic ion microscope imaging enables us to decouple the primary ion (PI) beam focus from spatial resolution and is a promising route to attaining higher throughput for mass spectrometry imaging (MSI). Using a commercial C60+ PI beam source, we can defocus the PI beam to give uniform intensity across a 2.5 mm2 area. By coupling the beam with a position-sensitive spatial detector, we can achieve mass spectral imaging of positive and negative secondary ions (SIs), which we demonstrate using samples comprising metals and dyes. Our approach involves simultaneous desorption of ions across a large field of view, enabling mass spectral images to be recorded over an area of 2.5 mm2 in a matter of seconds. Our instrument can distinguish spatial features with a resolution of better than 20 µm, and has a mass resolution of >500 at 500 u. There is considerable scope to improve this, and through simulations we estimate the future performance of the instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...