Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(6): 1558-1565, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35100028

RESUMO

Bacterial spot disease caused by Xanthomonas spp. is a global threat to tomato and pepper plants. A recent classification of these pathogens indicated the need for a diverse dataset of whole-genome resources. We report whole-genome resources of 89 Xanthomonas strains isolated from Canada (n = 44), the United States (n = 29), Argentina (n = 4), Brazil (n = 3), Costa Rica (n = 3), New Zealand (n = 1), Australia (n = 1), Mexico (n = 1), Taiwan (n = 1), Thailand (n = 1), and unknown (n = 1). Of these strains, 48 were previously identified to species-level based on nongenome-based approaches while 41 strains were classified only at the genus level. The average coverage of the sequencing reads was 103×. The draft genome sizes ranged from 4.53 to 5.46 Mbp with a G + C content of 63.53 to 67.78% and comprised 4,233-5,178 protein-coding sequences. Using average nucleotide identity (ANI) and genome-based DNA-DNA hybridization (gDDH) values, the taxonomic classifications were validated for 38 of the 48 strains previously assigned to species level using other methods. Ten strains previously identified as Xanthomonas campestris, X. axonopodis, X. vasicola, and X. arboricola were incorrectly assigned, and new species-level delineations are proposed. Data from ANI, gDDH, and pangenome phylogeny of shared protein families were used to assign the 41 strains, previously identified only to genus level, into five distinct species: X. euvesicatoria (pv. euvesicatoria or pv. perforans), X. hortorum pv. gardneri, X. vesicatoria, X. campestris, and X. arboricola. These 89 whole-genome sequences of Xanthomonas strains, the majority (49.4%) of which are from Canada, could be useful resources in our understanding of the global population structure and evolution of these pathogens.


Assuntos
Solanum lycopersicum , Xanthomonas , Genoma Bacteriano/genética , Solanum lycopersicum/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Estados Unidos
3.
Biology (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063961

RESUMO

Click-beetles (Coleoptera: Elateridae) are an abundant, diverse, and economically important beetle family that includes bioluminescent species. To date, molecular phylogenies have sampled relatively few taxa and genes, incompletely resolving subfamily level relationships. We present a novel probe set for anchored hybrid enrichment of 2260 single-copy orthologous genes in Elateroidea. Using these probes, we undertook the largest phylogenomic study of Elateroidea to date (99 Elateroidea, including 86 Elateridae, plus 5 non-elateroid outgroups). We sequenced specimens from 88 taxa to test the monophyly of families, subfamilies and tribes. Maximum likelihood and coalescent phylogenetic analyses produced well-resolved topologies. Notably, the included non-elaterid bioluminescent families (Lampyridae + Phengodidae + Rhagophthalmidae) form a clade within the otherwise monophyletic Elateridae, and Sinopyrophoridae may not warrant recognition as a family. All analyses recovered the elaterid subfamilies Elaterinae, Agrypninae, Cardiophorinae, Negastriinae, Pityobiinae, and Tetralobinae as monophyletic. Our results were conflicting on whether the hypnoidines are sister to Dendrometrinae or Cardiophorinae + Negastriinae. Moreover, we show that fossils with the eucnemid-type frons and elongate cylindrical shape may belong to Eucnemidae, Elateridae: Thylacosterninae, ancestral hard-bodied cantharoids or related extinct groups. Proposed taxonomic changes include recognition of Plastocerini as a tribe in Dendrometrinae and Hypnoidinae stat. nov. as a subfamily within Elateridae.

4.
Mycologia ; 113(4): 856-867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945437

RESUMO

Target enrichment is a term that encompasses multiple related approaches where desired genomic regions are captured by molecular baits, leaving behind redundant or non-target regions in the genome, followed by amplification and next-generation sequencing of those captured regions. A molecular bait set was developed based on 426 single-copy, oomycete-specific orthologs and 3 barcoding genes. The bait set was tested on 27 oomycete samples (belonging to the Saprolegniales, Albuginales, and Peronosporales) derived from live and herbarium specimens, as well as control samples of true fungi and plants. Results show that (i) our method greatly enriches for the targeted orthologs on oomycete samples, but insignificantly on fungal and plant samples; (ii) an average of 263 out of 429 orthologs (61%) were recovered from oomycete live and herbarium specimens; (iii) sequencing roughly 100 000 read pairs per sample is sufficient for optimal ortholog recovery while maintaining low sequencing costs; and (iv) the expected relationships were recovered by phylogenetic analysis from the data generated. This is the first report of an oomycete-specific target enrichment method with broad potential applications for evolutionary and taxonomic studies. A key benefit of our target enrichment method is that it allows researchers to easily unlock the vast and unexplored oomycete genomic diversity stored in natural history collections.


Assuntos
Oomicetos , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oomicetos/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...