Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 97(9): 1256, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30722452

RESUMO

Inspection of field plantings of diverse cruciferous species, mainly oilseed varieties sown for agronomic assessment at Crawley, (31.99°S, 115.82°E), Western Australia, in September 2012, indicated the occurrence of extensive leaf and stem colonization by powdery mildew at the late flowering stage, with whitish patches 3 to 4 cm in length on stems of Brassica campestris var. pekinensis, B. carinata, B. oleracea var. capitata, B. rapa, Eruca sativa, and E. vesicaria. These patches coalesced to form a dense, white, powdery layer. Infected leaves showed signs of early senescence. Pathogenicity was demonstrated from transferring field inoculum from the most susceptible variety by pressing diseased leaves onto leaves of the six potted plant species, and incubating plants in a moist chamber for 48 hours post-inoculation (hpi) in an air-conditioned glasshouse approximating 25°C. Signs of powdery mildew were evident by 7 days post-inoculation (dpi), and well developed symptoms by 10 dpi and as observed in the field. Uninoculated control plants did not develop powdery mildew. On all inoculated species, abundant conidia typical of those produced by Erysiphe cruciferarum were observed, matching the descriptions of conidia given by Purnell and Sivanesan (3), with cylindrical conidia typically borne singly or in short chains. Mycelia were amphigenous, in patches, often spreading to become effused. Conidiophores were 3 to 4 cells, unbranched, and foot cells cylindrical. Across all host species, conidia were mostly produced singly with overall mean measured lengths 19.7 to 35.4 µm (mean 26.9 µm), and measured widths 7.1 to 12.9 µm (mean 9.7 µm), from measurements taken on 200 conidia for each of the six different species. Spore sizes measured approximated those found for E. cruciferarum by Kaur et al. (1) on B. juncea in Western Australia (viz. 21.2 to 35.4 × 8.8 to 15.9 µm), but were smaller than those reported by Purnell and Sivanesan (3) (viz. 30 to 40 × 12 to 16 µm) or by Koike and Saenz (1) (viz. 35 to 50 × 12 to 21 µm). We confirmed a length-to-width ratio >2 (mean range 2.7 to 2.8 across all six species) as found by both Purnell and Sivanesan (3) and Koike and Saenz (2). Amplification of the internal transcribed spacer (ITS)1 and (ITS)2 regions flanking the 5.8S rRNA gene was carried out with universal primers ITS1 and ITS4 and PCR products from E. cruciferarum from B. oleracea var. capitata and B. rapa sequenced. BLAST analyses to compare sequences with those in GenBank showed a >99% nucleotide identity for E. cruciferarum. In Western Australia, E. cruciferarum has been recorded on B. napus var. napobrassica since 1971 (4), B. napus since 1986 (4), and on B. juncea since 2008 (1). In other regions of Australia, E. cruciferarum has been recorded on B. campestris, B. oleracea var. capitata, B. oleracea var. acephala, B. napus, B. napus var. naprobrassica, and B. rapa var. rapa. To the best of our knowledge, this is the first record of E. cruciferarum on B. campestris var. pekinensis, B. carinata, E. sativa, and E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia. Powdery mildew epidemics on other brassicas in Western Australia are generally sporadic and it remains to be seen what the impact of this disease will be on these new host species. References: (1) P. Kaur et al. Plant Dis. 92:650, 2008. (2) S. T. Koike and G. S. Saenz. Plant Dis. 81:1093, 1997. (3) T. J. Purnell and A. Sivanesan. No. 251 in IMI Descriptions of Fungi and Bacteria, 1970. (4) R. G. Shivas. J. Royal Soc. West. Aust. 72:1, 1989.

2.
Plant Dis ; 96(5): 769, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-30727547

RESUMO

Tedera (Bituminaria bituminosa (L.) C.H. Stirton var. albomarginata) has been successfully established across the mixed-farming (wheat-sheep) region of Western Australia because this species has remarkable drought tolerance and can survive the dry-summer period with strong retention of green leaf. A leaf spot symptom involving pale brown lesions with distinct dark brown margins had been observed in genetic evaluation plots of tedera at Medina and Mount Barker, Western Australia, and a Phoma sp. was isolated. Single-spore isolations of a typical Phoma sp. isolate were made onto potato dextrose agar and maintained at 20°C, and a representative culture has been lodged in the Western Australian Culture Collection Herbarium maintained at the Department of Agriculture and Food Western Australia (Accession No. WAC13435). Amplification of the internal transcribed spacer (ITS) 1 and ITS2 regions flanking the 5.8S rRNA gene were carried out with universal primers ITS1 and ITS4 according to published protocol (3). The DNA PCR products were sequenced and BLAST analyses was used to compare sequences with those in GenBank. The sequence had 99% nucleotide identity with the corresponding sequence in GenBank for Phoma herbarum. Isolates also showed morphological (e.g., 1) and molecular (e.g., 2) similarities with P. herbarum as described in other reports. The relevant sequence information for a representative isolate has been lodged in GenBank (Accession No. JQ282910). A conidial suspension of 107 conidia ml-1 from a single-spore culture was spray inoculated onto foliage of 6-week-old tedera plants maintained under >90% relative humidity conditions for 72-h postinoculation. Symptoms evident by 10 days postinoculation consisted of pale brown lesions, mostly 1.5 to 4 mm in diameter, which developed a distinct, dark brown margin. Occasional lesions also showed a distinct chlorotic halo extending 1 to 1.5 mm outside the boundary of the lesion. Infection studies were successfully repeated twice and P. herbarum was readily reisolated from infected foliage. No disease was observed on and no P. herbarum were isolated from water-inoculated control plants. Except for a recent published report of P. herbarum on field pea (Pisum sativum L.) (2), this pathogen has only been noted in the Australian Plant Pest Database as occurring on lucerne (Medicago sativa L.) and soybean (Glycine max (L.) Merr.) in Western Australia in 1985 and on a Protea sp. in 1991. To our knowledge, this is the first published report of P. herbarum as a pathogen on tedera in Australia or elsewhere. That P. herbarum occurs on other hosts in Australia and has a wide host range elsewhere together suggest its potential to be a pathogen on a wider range of host genera and species. References: (1) G. L. Kinsey. No. 1501 in: IMI Descriptions of Fungi and Bacteria. 2002. (2) Y. P. Li et al. Plant Dis. 95:1590, 2011. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.

3.
Plant Dis ; 96(1): 148, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30731873

RESUMO

Black spot is a major disease of field pea (Pisum sativum L.) production across southern Australia. Known causal agents in Australia include one or more of Mycosphaerella pinodes (Berk. & Bloxam) Vestergr., Phoma medicaginis var. pinodella (L.K. Jones), Ascochyta pisi Lib., or P. koolunga (Davidson, Hartley, Priest, Krysinska-Kaczmarek, Herdina, McKay & Scott) (2), but other pathogens may also be associated with black spot symptoms. Black spot generally occurs on most plants and in most pea fields in Western Australia (W.A.), and during earlier winter/spring surveys of blackspot pathogens, some isolates were tentatively allocated to P. medicaginis var. pinodella despite different cultural characteristics on potato dextrose agar (PDA). Recently, single-spore isolations of a single culture each from an infested pea crop at Medina, Moora, and Mt. Barker in W.A. were made onto PDA. A PCR-based assay with TW81 and AB28 primers was used to amplify from the ITS-5.8S rDNA region. Purified DNA products were sequenced for the three isolates and then BLASTn was used to compare sequences with those in GenBank. Our sequences (GenBank Accession Nos. JN37743, JN377439, and JN377438) had 100% nucleotide identity with P. exigua Desm. var. exigua accessions (GI13385450, GI169894028, and GI189163921), an earlier synonym of what is now known as Boeremia exigua var. exigua ([Desm.] Aveskamp, Gruyter & Verkley) (1). Davidson et al. (2) used the same primers to identify P. koolunga, but none of our isolates were P. koolunga. A suspension of 107 conidia ml-1 of each representative isolate was inoculated onto foliage of 15-day-old field pea cv. Dundale plants and maintained at >90% relative humidity for 72 h postinoculation. Control plants inoculated with just water remained symptomless. Brown lesions were evident by 8 to 10 days postinoculation and mostly 1 to 3 mm in diameter. B. exigua var. exigua was readily reisolated from infected leaves. Isolates have been lodged in the W.A. Culture Collection Herbarium maintained at the Department of Agriculture and Food W.A. (Accession Nos. WAC13500, WAC13502, and WAC13501 from Medina, Moora, and Mt. Barker, respectively). Outside Australia, its synonym P. exigua var. exigua is a known pathogen of field pea (4), other legumes including common bean (Phaseolus vulgaris L.) (4) and soybean (Glycine max [L.] Merr.) (3), and is known to produce phytotoxic cytochalasins. In eastern Australia, P. exigua var. exigua has been reported on common bean (1930s and 1950s), phasey bean (Macroptilium lathyroides [L.] Urb.) and siratro (M. atropurpureum (DC.) Urb.) (1950s and 1960s), mung bean (Vigna radiata [L.] Wilczek.) (1960s), ramie (Boehmeria nivea [L.] Gaudich.) (1939), potato (Solanum tuberosum L.) (1980s), and pyrethrum (Tanacetum cinerariifolium [Trevir.] Schultz Bip.) (2004 and 2007) (Australian Plant Pest Database). To our knowledge, this the first report of B. exigua var. exigua on field pea in Australia, and because of its potential to be a significant pathogen on field pea, warrants further evaluation. References: (1) M. M. Aveskamp et al. Stud. Mycol. 65:1, 2010. (2) J. A. Davidson et al. Mycologia 101:120, 2009. (3) L. Irinyi et al. Mycol. Res. 113:249, 2009. (4) J. Marcinkowska. Biul. Inst. Hod. Aklim. Rosl. 190:169, 1994.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...