Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 178-179: 279-289, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28926792

RESUMO

The large rivers are main pathways for the delivery of suspended sediments into coastal environments, affecting the biogeochemical fluxes and the ecosystem functioning. The radionuclides from 238U and 232Th-series can be used to understand the dynamic processes affecting both catchment soil erosion and sediment delivery to oceans. Based on annual water discharge the Rhone River represents the largest river of the Mediterranean Sea. The Rhone valley also represents the largest concentration in nuclear power plants in Europe. A radioactive disequilibrium between particulate 226Ra(p) and 238U(p) was observed in the suspended sediment discharged by the Lower Rhone River (Eyrolle et al. 2012), and a fraction of particulate 234Th was shown to derive from dissolved 238U(d) (Zebracki et al. 2013). This extensive study has investigated the dissolved U isotopes distribution in the Lower Rhone River and its implication on particulate radionuclides disequilibrium within the decay series. The suspended sediment and filtered river waters were collected at low and high water discharges. During the 4-months of the study, two flood events generated by the Rhone southern tributaries were monitored. In river waters, the total U(d) concentration and U isotopes distribution were obtained through Q-ICP-MS measurements. The Lower Rhone River has displayed non-conservative U-behavior, and the variations in U(d) concentration between southern tributaries were related to the differences in bedrock lithology. The artificially occurring 236U was detected in the Rhone River at low water discharges, and was attributed to the liquid releases from nuclear industries located along the river. The (235U/238U)(d) activity ratio (=AR) in river waters was representative of the 235U natural abundance on Earth. The (226Ra/238U)(p) AR in suspended sediment has indicated a radioactive disequilibrium (average 1.3 ± 0.1). The excess of 234Th in suspended sediment =(234Thxs(p)) was apparent solely at low water discharges. The activity of 234Thxs(p) was calculated through gamma measurements and ranged from unquantifiable to 56 ± 14 Bq kg-1. The possibility of using 234Th as a tracer for the suspended sediment dynamics in large Mediterranean river was then discussed.


Assuntos
Monitoramento de Radiação , Urânio/análise , Poluentes Radioativos da Água/análise , França , Sedimentos Geológicos , Rios , Suíça , Contaminação Radioativa da Água/estatística & dados numéricos
2.
Sci Total Environ ; 579: 1560-1571, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923577

RESUMO

The role of particulate organic matter in radiocesium transfers from soils to rivers was investigated in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Suspended and deposited sediments, filtered water, macro organic debris and dead leaves were sampled along the six most contaminated coastal river catchments of the Fukushima prefecture in the early autumns 2013 and 2014. Radiocesium concentrations of river samples and total organic carbon concentrations in suspended and deposited sediments were measured. Radiocesium concentrations of suspended and deposited sediments were significantly correlated to 137Cs inventories in soils and total organic carbon. The distributions of radiocesium between the organic and mineral phases of both types of sediment were assessed by using a modelling approach. The results suggest that, during the early autumn season, the organic fraction was the main phase that carried the radiocesiums in deposited sediments and in suspended sediments for suspended loads <25mg·L-1. For higher suspended loads like those occurring during typhoon periods, the mineral fraction was the main carrier phase. Thus, high apparent distribution coefficient values noted by various authors in Fukushima could be attributed to the high radiocesium contents of particulate organic matter. Since it is well known that organic compounds generally do not significantly adsorb radiocesium onto specific sites, several hypotheses are suggested: 1) Radiocesiums may have been absorbed into organic components at the early stage of atmospheric radioactive deposits and/or later due to biomass recycling and 2) Those elements would be partly carried by glassy hot particles together with organic matter transported by rivers in Fukushima. Both hypotheses would lead to conserve the amount of radiocesiums associated with particles during their transfers from the contaminated areas to the marine environment. Finally, such organically bound radiocesium would lead to significant deliveries of bioavailable radiocesium for living organisms at Fukushima.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Substâncias Húmicas/análise , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Japão , Material Particulado/análise , Rios/química
3.
J Environ Radioact ; 151 Pt 1: 328-340, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26588202

RESUMO

To investigate riverine transfers from contaminated soils of the Fukushima Prefecture in Japan to the marine environment, suspended sediments, filtered water, sediments and detrital organic macro debris deposited onto river beds were collected in November 2013 within small coastal rivers during conditions of low flow rates and low turbidity. River waters were directly filtered on the field and high efficiency well-type Ge detectors were used to analyse radiocaesium concentrations in very small quantities of suspended particles and filtered water (a few mg to a few g). For such base-flow conditions, our results show that the watersheds studied present similar hydro-sedimentary behaviours at their outlets and that the exports of dissolved and particulate radiocaesium are comparable. Moreover, the contribution of these rivers to the instantaneous export of radiocaesium to the ocean is similar to that of the Abukuma River. Our preliminary results indicate that, in the estuaries, radiocaesium concentrations in suspended sediments would be reduced by more than 80%, while radiocaesium concentration in filtered waters would be maintained. Significant correlations between radiocaesium concentrations and radiocaesium inventories in the soils of the catchments indicate that there was at that time little intra and inter-watershed variability in the transfer processes of radiocaesium from lands to rivers at this regional scale. The apparent liquid-solid partition coefficient (KD) values acquired for the lowest loads/finest particles complement the values acquired by using sediment traps and highlight the strong capacity of the smallest particles to transfer radiocaesium. Finally, but not least, our observations suggest that there could be a significant transfer of highly contaminated detrital biomass from forest litter to the downstream rivers in a rather conservative way.


Assuntos
Radioisótopos de Césio/análise , Sedimentos Geológicos/análise , Monitoramento de Radiação , Rios/química , Poluentes Radioativos da Água/análise , Acidente Nuclear de Fukushima , Japão
4.
J Environ Radioact ; 139: 24-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464038

RESUMO

Tritium and (14)C are currently the two main radionuclides discharged by nuclear industry. Tritium integrates into and closely follows the water cycle and, as shown recently the carbon cycle, as does (14)C (Eyrolle-Boyer et al., 2014a, b). As a result, these two elements persist in both terrestrial and aquatic environments according to the recycling rates of organic matter. Although on average the organically bound tritium (OBT) activity of sediments in pristine rivers does not significantly differ today (2007-2012) from the mean tritiated water (HTO) content on record for rainwater (2.4 ± 0.6 Bq/L and 1.6 ± 0.4 Bq/L, respectively), regional differences are expected depending on the biomass inventories affected by atmospheric global fallout from nuclear testing and the recycling rate of organic matter within watersheds. The results obtained between 2007 and 2012 for (14)C show that the levels varied between 94.5 ± 1.5 and 234 ± 2.7 Bq/kg of C for the sediments in French rivers and across a slightly higher range of 199 ± 1.3 to 238 ± 3.1 Bq/kg of C for fish. This variation is most probably due to preferential uptake of some organic carbon compounds by fish restraining (14)C dilution with refractory organic carbon and/or with old carbonates both depleted in (14)C. Overall, most of these ranges of values are below the mean baseline value for the terrestrial environment (232.0 ± 1.8 Bq/kg of C in 2012, Roussel-Debet, 2014a) in relation to dilution by the carbonates and/or fossil organic carbon present in aquatic systems. This emphasises yet again the value of establishing regional baseline value ranges for these two radionuclides in order to account for palaeoclimatic and lithological variations. Besides, our results obtained from sedimentary archive investigation have confirmed the delayed contamination of aquatic sediments by tritium from the past nuclear tests atmospheric fallout, as recently demonstrated from data chronicles (Eyrolle-Boyer et al., 2014a,b). Thus Sedimentary archives can be successfully used to reconstruct past (14)C and OBT levels. Additionally, sediment repositories potentially represent significant storages of OBT that may account for in case of further remobilisation. We finally show that floods can significantly affect the OBT and (14)C levels within suspended particles or sediments depending on the origin of particles reinforcing the need to acquire baseline value range at a regional scale.


Assuntos
Radioisótopos de Carbono/análise , Trítio/análise , Poluentes Radioativos da Água/análise
5.
Sci Total Environ ; 502: 122-32, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25255199

RESUMO

Delivery of suspended sediment from large rivers to marine environments has important environmental impacts on coastal zones. In France, the Rhone River (catchment area of 98,000 km(2)) is by far the main supplier of sediment to the Mediterranean Sea and its annual solid discharge is largely controlled by flood events. This study investigates the relevance of alternative and original fingerprinting techniques based on the relative abundances of a series of radionuclides measured routinely at the Rhone River outlet to quantify the relative contribution of sediment supplied by the main tributaries during floods. Floods were classified according to the relative contribution of the main subcatchments (i.e., Oceanic, Cevenol, extensive Mediterranean and generalised). Between 2000 and 2012, 221 samples of suspended sediment were collected at the outlet and were shown to be representative of all flood types that occurred during the last decade. Three geogenic radionuclides (i.e., (238)U, (232)Th and (40)K) were used as fingerprints in a multivariate mixing model in order to estimate the relative contribution of the main subcatchment sources-characterised by different lithologies-in sediment samples collected at the outlet. Results showed that total sediment supply originating from Pre-Alpine, Upstream, and Cevenol sources amounted to 10, 7 and 2.10(6)tons, respectively. These results highlight the role of Pre-Alpine tributaries as the main sediment supplier (53%) to the Rhone River during floods. Other fingerprinting approaches based on artificial radionuclide activity ratios (i.e., (137)Cs/(239+240)Pu and (238)Pu/(239+240)Pu) were tested and provided a way to quantify sediment remobilisation or the relative contributions of the southern tributaries. In the future, fingerprinting methods based on natural radionuclides should be further applied to catchments with heterogeneous lithologies. Methods based on artificial radionuclides should be further applied to catchments characterised by heterogeneous post-Chernobyl (137)Cs deposition or by specific releases of radioactive effluents.


Assuntos
Radioisótopos de Césio/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Rios/química , Poluentes Radioativos da Água/análise , França , Sedimentos Geológicos/análise
6.
J Environ Radioact ; 136: 162-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24956583

RESUMO

The global inventory of naturally produced tritium (3H) is estimated at 2.65 kg, whereas more than 600 kg have been released during atmospheric nuclear tests (NCRP, 1979; UNSCEAR, 2000) constituting the main source of artificial tritium throughout the Anthropocene. The behaviour of this radioactive isotope in the environment has been widely studied since the 1950s, both through laboratory experiments and, more recently, through field observations (e.g., Cline, 1953; Kirchmann et al., 1979; Daillant et al., 2004; McCubbin et al., 2001; Kim et al., 2012). In its "free" forms, [i.e. 3H gas or 3H hydride (HT); methyl 3H gas (CH3T); tritiated H2O or 3H-oxide (HTO); and Tissue Free Water 3H (TFWT)], tritium closely follows the water cycle. However, 3H bound with organic compounds, mainly during the basic stages of photosynthesis or through weak hydrogen links, is less exchangeable with water, which explains its persistence in the carbon cycle as re underlined recently by Baglan et al. (2013), Jean-Batiste and Fourré (2013), Kim et al. (2013a,b). In this paper, we demonstrate that terrestrial biomass pools, historically contaminated by global atmospheric fallout from nuclear testing, have constituted a significant delayed source of organically bound tritium (OBT) for aquatic systems, resulting in an apparent enrichment of OBT as compared to HTO. This finding helps to explain concentration factors (tritium concentration in biota/concentration in water) greater than 1 observed in areas that are not directly affected by industrial radioactive wastes, and thus sheds light on the controversies regarding tritium 'bioaccumulation'. Such apparent enrichment of OBT is expected to be more pronounced in the Northern Hemisphere where fallout was most significant, depending on the nature and biodegradability of terrestrial biomass at the regional scale. We further believe that OBT transfers from the continent to oceans have been sufficient to affect tritium concentrations in coastal marine biota (i.e., near river inputs). Our findings demonstrate that the persistence of terrestrial organic (3)H explains imbalances between organically bound tritium and free (3)H in most river systems in particular those not impacted by releases from nuclear facilities.


Assuntos
Monitoramento de Radiação , Cinza Radioativa , Rios/química , Trítio/análise , Poluentes Radioativos da Água/análise , Ecossistema , França , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...