Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(30): 16492-16499, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33979476

RESUMO

Low-valent (Me BDI)Al and (Me BDI)Ga and highly Lewis acidic cations in [(tBu BDI)M+ ⋅C6 H6 ][(B(C6 F5 )4 - ] (M=Mg or Zn, Me BDI=HC[C(Me)N-DIPP]2 , tBu BDI=HC[C(tBu)N-DIPP]2 , DIPP=2,6-diisopropylphenyl) react to heterobimetallic cations [(tBu BDI)Mg-Al(Me BDI)+ ], [(tBu BDI)Mg-Ga(Me BDI)+ ] and [(tBu BDI)Zn-Ga(Me BDI)+ ]. These cations feature long Mg-Al (or Ga) bonds while the Zn-Ga bond is short. The [(tBu BDI)Zn-Al(Me BDI)+ ] cation was not formed. Combined AIM and charge calculations suggest that the metal-metal bonds to Zn are considerably more covalent, whereas those to Mg should be described as weak AlI (or GaI )→Mg2+ donor bonds. Failure to isolate the Zn-Al combination originates from cleavage of the C-F bond in the solvent fluorobenzene to give (tBu BDI)ZnPh and (Me BDI)AlF+ which is extremely Lewis acidic and was not observed, but (Me BDI)Al(F)-(µ-F)-(F)Al(Me BDI)+ was verified by X-ray diffraction. DFT calculations show that the remarkably facile C-F bond cleavage follows a dearomatization/rearomatization route.

2.
Chem Commun (Camb) ; 57(43): 5278-5281, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33942830

RESUMO

First evidence for the coordination of norbornadiene (nbd) and dicyclopentadiene (dcpd) with the main group metal Mg is provided by the crystal structures of adducts with cationic ß-diketiminate (BDI) Mg complexes. While the dcpd complex is thermally stable, [(BDI)Mg+·nbd][B(C6F5)4-] shows slow room temperature retro-Diels-Alder decomposition to give a complex with the cation (BDI)Mg(C5H5)Mg(BDI)+.

3.
Chemistry ; 27(28): 7756-7763, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33780071

RESUMO

Strongly Lewis acidic cationic aluminium complexes, stabilized by ß-diketiminate (BDI) ligands and free of Lewis bases, have been prepared as their B(C6 F5 )4 - salts and were investigated for catalytic activity in imine hydrogenation. The backbone (R1) and N (R2) substituents on the R1,R2 BDI ligand (R1,R2 BDI=HC[C(R1)N(R2)]2 ) influence sterics and Lewis acidity. Ligand bulk increases along the row Me,DIPP BDI

4.
Dalton Trans ; 50(9): 3178-3185, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33594995

RESUMO

The chiral building block (R)-(+)-2,2'-diamino-1,1'-binaphthyl, (R)-BINAM, which is often used as backbone in privileged enantioselective catalysts, was converted to a series of N-substituted proligands R1-H2 (R = CH2tBu, C(H)Ph2, PPh2, dibenzosuberane, 8-quinoline). After double deprotonation with strong Mg or Ca bases, a series of alkaline earth (Ae) metal catalysts R1-Ae·(THF)n was obtained. Crystal structures of these C2-symmetric catalysts have been analyzed by quadrant models which show that the ligands with C(H)Ph2, dibenzosuberane and 8-quinoline substituents should give the best steric discrimination for the enantioselective intramolecular alkene hydroamination (IAH) of the aminoalkenes H2C[double bond, length as m-dash]CHCH2CR'2CH2NH2 (CR'2 = CPh2, CCy or CMe2). The dianionic R12- ligand in R1-Ae·(THF)n functions as reagent that deprotonates the aminoalkene substrate, while the monoanionic (R1-H)- ligand formed in this reaction functions as a chiral spectator ligand that controls the enantioselectivity of the ring closure reaction. Depending on the substituent R in the BINAM ligand, full cyclization of aminoalkenes to chiral pyrrolidine products as fast as 5 minutes was observed. Product analysis furnished enantioselectivities up to 57% ee, which marks the highest enantioselectivity reported for Ca catalyzed IAH. Higher selectivities are impeded by double protonation of the R12- ligand leading to complete loss of chiral information in the catalytically active species.

5.
Angew Chem Int Ed Engl ; 60(8): 4252-4258, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33180975

RESUMO

Ba metal was activated by evaporation and cocondensation with heptane. This black powder is a highly active hydrogenation catalyst for the reduction of a variety of unactivated (non-conjugated) mono-, di- and tri-substituted alkenes, tetraphenylethylene, benzene, a number of polycyclic aromatic hydrocarbons, aldimines, ketimines and various pyridines. The performance of metallic Ba in hydrogenation catalysis tops that of the hitherto most active molecular group 2 metal catalysts. Depending on the substrate, two different catalytic cycles are proposed. A: a classical metal hydride cycle and B: the Ba metal cycle. The latter is proposed for substrates that are easily reduced by Ba0 , that is, conjugated alkenes, alkynes, annulated rings, imines and pyridines. In addition, a mechanism in which Ba0 and BaH2 are both essential is discussed. DFT calculations on benzene hydrogenation with a simple model system (Ba/BaH2 ) confirm that the presence of metallic Ba has an accelerating effect.

6.
Chem Commun (Camb) ; 56(77): 11402-11405, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32852001

RESUMO

The bulk of a recently reported superbulky ß-diketiminate ligand was further increased by introducing tBu substituents in the ligand backbone. Attempts to isolate free Mg radicals with this extremely bulky ligand failed. Instead, a dinuclear Mg(i) complex with one chelating and one monodentate ß-diketiminate ligand was isolated. Asymmetry in metal coordination results in a polarized Mg-Mg bond.

7.
Chem Commun (Camb) ; 56(64): 9178-9181, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32657320

RESUMO

Two large decanuclear hydride clusters of the general formula Ae10H16[N(R)R']4·(PMDTA)2 (Ae = Ca, Sr) were isolated. Both derivatives feature a [Ae10H16]4+ core, consisting of two edge shared metal octahedra with interstitial hydrides, while the other hydrides cap triangular faces.

8.
Angew Chem Int Ed Engl ; 59(37): 15982-15986, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449816

RESUMO

The reagent RK [R=CH(SiMe3 )2 or N(SiMe3 )2 ] was expected to react with the low-valent (DIPP BDI)Al (DIPP BDI=HC[C(Me)N(DIPP)]2 , DIPP=2,6-iPr-phenyl) to give [(DIPP BDI)AlR]- K+ . However, deprotonation of the Me group in the ligand backbone was observed and [H2 C=C(N-DIPP)-C(H)=C(Me)-N-DIPP]Al- K+ (1) crystallized as a bright-yellow product (73 %). Like most anionic AlI complexes, 1 forms a dimer in which formally negatively charged Al centers are bridged by K+ ions, showing strong K+ ⋅⋅⋅DIPP interactions. The rather short Al-K bonds [3.499(1)-3.588(1) Å] indicate tight bonding of the dimer. According to DOSY NMR analysis, 1 is dimeric in C6 H6 and monomeric in THF, but slowly reacts with both solvents. In reaction with C6 H6 , two C-H bond activations are observed and a product with a para-phenylene moiety was exclusively isolated. DFT calculations confirm that the Al center in 1 is more reactive than that in (DIPP BDI)Al. Calculations show that both AlI and K+ work in concert and determines the reactivity of 1.

9.
Angew Chem Int Ed Engl ; 59(23): 9102-9112, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045078

RESUMO

Two series of bulky alkaline earth (Ae) metal amide complexes have been prepared: Ae[N(TRIP)2 ]2 (1-Ae) and Ae[N(TRIP)(DIPP)]2 (2-Ae) (Ae=Mg, Ca, Sr, Ba; TRIP=SiiPr3 , DIPP=2,6-diisopropylphenyl). While monomeric 1-Ca was already known, the new complexes have been structurally characterized. Monomers 1-Ae are highly linear while the monomers 2-Ae are slightly bent. The bulkier amide complexes 1-Ae are by far the most active catalysts in alkene hydrogenation with activities increasing from Mg to Ba. Catalyst 1-Ba can reduce internal alkenes like cyclohexene or 3-hexene and highly challenging substrates like 1-Me-cyclohexene or tetraphenylethylene. It is also active in arene hydrogenation reducing anthracene and naphthalene (even when substituted with an alkyl) as well as biphenyl. Benzene could be reduced to cyclohexane but full conversion was not reached. The first step in catalytic hydrogenation is formation of an (amide)AeH species, which can form larger aggregates. Increasing the bulk of the amide ligand decreases aggregate size but it is unclear what the true catalyst(s) is (are). DFT calculations suggest that amide bulk also has a noticeable influence on the thermodynamics for formation of the (amide)AeH species. Complex 1-Ba is currently the most powerful Ae metal hydrogenation catalyst. Due to tremendously increased activities in comparison to those of previously reported catalysts, the substrate scope in hydrogenation catalysis could be extended to challenging multi-substituted unactivated alkenes and even to arenes among which benzene.

10.
Chem Sci ; 12(7): 2410-2418, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34164006

RESUMO

Complexes of the Lewis base-free cations (MeBDI)Mg+ and ( tBuBDI)Mg+ with Ph-X ligands (X = F, Cl, Br, I) have been studied (MeBDI = HC[C(Me)N-DIPP]2 and tBuBDI = HC[C(tBu)N-DIPP]2; DIPP = 2,6-diisopropylphenyl). For the smaller ß-diketiminate ligand (MeBDI) only complexes with PhF could be isolated. Heavier Ph-X ligands could not compete with bonding of Mg to the weakly coordinating anion B(C6F5)4 -. For the cations with the bulkier tBuBDI ligand, the full series of halobenzene complexes was structurally characterized. Crystal structures show that the Mg⋯X-Ph angle strongly decreases with the size of X: F 139.1°, Cl 101.4°, Br 97.7°, I 95.1°. This trend, which is supported by DFT calculations, can be explained with the σ-hole which increases from F to I. Charge calculation and Atoms-In-Molecules analyses show that Mg⋯F-Ph bonding originates from electrostatic attraction between Mg2+ and the very polar C δ+-F δ- bond. For the heavier halobenzenes, polarization of the halogen atom becomes increasingly important (Cl < Br < I). Complexation with Mg leads in all cases to significant Ph-X bond activation and elongation. This unusual coordination of halogenated species to early main group metals is therefore relevant to C-X bond breaking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...