Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 437-448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499210

RESUMO

Systemic activation of toll-like receptor 3 (TLR3) signaling using poly(I:C), a TLR3 agonist, drives ethanol consumption in several rodent models, while global knockout of Tlr3 reduces drinking in C57BL/6J male mice. To determine if brain TLR3 pathways are involved in drinking behavior, we used CRISPR/Cas9 genome editing to generate a Tlr3 floxed (Tlr3F/F) mouse line. After sequence confirmation and functional validation of Tlr3 brain transcripts, we injected Tlr3F/F male mice with an adeno-associated virus expressing Cre recombinase (AAV5-CMV-Cre-GFP) to knockdown Tlr3 in the medial prefrontal cortex, nucleus accumbens, or dorsal striatum (DS). Only Tlr3 knockdown in the DS decreased two-bottle choice, every-other-day (2BC-EOD) ethanol consumption. DS-specific deletion of Tlr3 also increased intoxication and prevented acute functional tolerance to ethanol. In contrast, poly(I:C)-induced activation of TLR3 signaling decreased intoxication in male C57BL/6J mice, consistent with its ability to increase 2BC-EOD ethanol consumption in these mice. We also found that TLR3 was highly colocalized with DS neurons. AAV5-Cre transfection occurred predominantly in neurons, but there was minimal transfection in astrocytes and microglia. Collectively, our previous and current studies show that activating or inhibiting TLR3 signaling produces opposite effects on acute responses to ethanol and on ethanol consumption. While previous studies, however, used global knockout or systemic TLR3 activation (which alter peripheral and brain innate immune responses), the current results provide new evidence that brain TLR3 signaling regulates ethanol drinking. We propose that activation of TLR3 signaling in DS neurons increases ethanol consumption and that a striatal TLR3 pathway is a potential target to reduce excessive drinking.


Assuntos
Etanol , Receptor 3 Toll-Like , Camundongos , Masculino , Animais , Receptor 3 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Etanol/farmacologia , Transdução de Sinais , Consumo de Bebidas Alcoólicas/metabolismo , Poli I-C/farmacologia
2.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34874917

RESUMO

The protein tau and its isoforms are associated with several neurodegenerative diseases, many of which are characterized by greater deposition of the 4-repeat (4R) tau isoform; however, the role of 4R tau in disease pathogenesis remains unclear. We created antisense oligonucleotides (ASOs) that alter the ratio of 3R to 4R tau to investigate the role of specific tau isoforms in disease. Preferential expression of 4R tau in human tau-expressing (hTau-expressing) mice was previously shown to increase seizure severity and phosphorylated tau deposition without neuronal or synaptic loss. In this study, we observed strong colocalization of 4R tau within reactive astrocytes and increased expression of pan-reactive and neurotoxic genes following 3R to 4R tau splicing ASO treatment in hTau mice. Increasing 4R tau levels in primary astrocytes provoked a similar response, including a neurotoxic genetic profile and diminished homeostatic function, which was replicated in human induced pluripotent stem cell-derived (iPSC-derived) astrocytes harboring a mutation that exhibits greater 4R tau. Healthy neurons cultured with 4R tau-expressing human iPSC-derived astrocytes exhibited a higher firing frequency and hypersynchrony, which could be prevented by lowering tau expression. These findings support a potentially novel pathway by which astrocytic 4R tau mediates reactivity and dysfunction and suggest that astrocyte-targeted therapeutics against 4R tau may mitigate neurodegenerative disease progression.


Assuntos
Astrócitos , Proteínas tau , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187891

RESUMO

Heterozygous genetic variants within the TREM2 gene show a strong association with increased Alzheimer's disease (AD) risk. Amyloid beta-depositing mouse models haploinsufficient or null for Trem2 have identified important relationships among TREM2, microglia, and AD pathology; however, results are challenging to interpret in the context of varying microglial phenotypes and disease progression. We hypothesized that acute Trem2 reduction may alter amyloid pathology and microglial responses independent of genetic Trem2 deletion in mouse models. We developed antisense oligonucleotides (ASOs) that potently but transiently lower Trem2 messenger RNA throughout the brain and administered them to APP/PS1 mice at varying stages of plaque pathology. Late-stage ASO-mediated Trem2 knockdown significantly reduced plaque deposition and attenuated microglial association around plaque deposits when evaluated 1 mo after ASO injection. Changes in microglial gene signatures 1 wk after ASO administration and phagocytosis measured in ASO-treated cells together indicate that microglia may be activated with short-term Trem2 reduction. These results suggest a time- and/or dose-dependent role for TREM2 in mediating plaque deposition and microglial responses in which loss of TREM2 function may be beneficial for microglial activation and plaque removal in an acute context.


Assuntos
Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/patologia , Fagocitose , Receptores Imunológicos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Presenilina-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas tau/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(11): 5102-5107, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30792350

RESUMO

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


Assuntos
Relógios Circadianos , Inflamação/metabolismo , Inflamação/patologia , Neurônios/metabolismo , Neurônios/patologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Morte Celular , Deleção de Genes , Gliose/patologia , Hipocampo/patologia , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Rede Nervosa/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Transdução de Sinais
5.
PLoS One ; 11(2): e0148717, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919393

RESUMO

Late onset Alzheimer's disease (LOAD) is a genetically complex and clinically heterogeneous disease. Recent large-scale genome wide association studies (GWAS) have identified more than twenty loci that modify risk for AD. Despite the identification of these loci, little progress has been made in identifying the functional variants that explain the association with AD risk. Thus, we sought to determine whether the novel LOAD GWAS single nucleotide polymorphisms (SNPs) alter expression of LOAD GWAS genes and whether expression of these genes is altered in AD brains. The majority of LOAD GWAS SNPs occur in gene dense regions under large linkage disequilibrium (LD) blocks, making it unclear which gene(s) are modified by the SNP. Thus, we tested for brain expression quantitative trait loci (eQTLs) between LOAD GWAS SNPs and SNPs in high LD with the LOAD GWAS SNPs in all of the genes within the GWAS loci. We found a significant eQTL between rs1476679 and PILRB and GATS, which occurs within the ZCWPW1 locus. PILRB and GATS expression levels, within the ZCWPW1 locus, were also associated with AD status. Rs7120548 was associated with MTCH2 expression, which occurs within the CELF1 locus. Additionally, expression of several genes within the CELF1 locus, including MTCH2, were highly correlated with one another and were associated with AD status. We further demonstrate that PILRB, as well as other genes within the GWAS loci, are most highly expressed in microglia. These findings together with the function of PILRB as a DAP12 receptor supports the critical role of microglia and neuroinflammation in AD risk.


Assuntos
Doença de Alzheimer/genética , Proteínas CELF1/genética , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/genética , Locos de Características Quantitativas , Fatores de Risco , Dedos de Zinco/genética
6.
Neurobiol Aging ; 38: 215.e1-215.e12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652843

RESUMO

GRN, the gene coding for the progranulin (PGRN) protein, was recognized as a gene linked to frontotemporal lobar degeneration (FTLD). The first mutations identified were null mutations giving rise to haploinsufficiency. Missense mutations were subsequently detected, but only a small subset has been functionally investigated. We identified missense mutations (C105Y, A199V, and R298H) in FTLD cases with family history and/or with low plasma PGRN levels. The aim of this study was to determine their pathogenicity. We performed functional studies, analyzing PGRN expression, secretion, and cleavage by elastase. GRN C105Y affected both secretion and elastase cleavage, likely representing a pathogenic mutation. GRN A199V did not alter the physiological properties of PGRN and GRN R298H produced only moderate effects on PGRN secretion, indicating that their pathogenicity is uncertain. In the absence of strong segregation data and neuropathological examinations, genetic, biomarker, and functional studies can be applied to an algorithm to assess the likelihood of pathogenicity for a mutation. This information can improve our understanding of the complex mechanisms by which GRN mutations lead to FTLD.


Assuntos
Degeneração Lobar Frontotemporal/genética , Estudos de Associação Genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação de Sentido Incorreto/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Celobiose/análogos & derivados , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/patologia , Dosagem de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/análise , Pessoa de Meia-Idade , Progranulinas
7.
J Biol Chem ; 285(49): 38415-27, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20889977

RESUMO

Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple µ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by µ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFß1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of µ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.


Assuntos
Astrócitos/metabolismo , Morfina/farmacologia , Entorpecentes/farmacologia , Neuritos/metabolismo , Sinapses/metabolismo , Trombospondina 1/biossíntese , Animais , Linhagem Celular Transformada , Proliferação de Células , Córtex Cerebral/metabolismo , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo
8.
J Neurochem ; 112(6): 1431-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19895666

RESUMO

As embryonic stem cell-derived neural progenitors (NPs) have the potential to be used in cell replacement therapy, an understanding of the signaling mechanisms that regulate their terminal differentiation is imperative. In previous studies, we discovered the presence of functional mu opioid receptors (MOR) and kappa opioid receptors (KOR) in mouse embryonic stem cells and NPs. Here, MOR and KOR immunoreactivity was detected in NP-derived oligodendrocytes during three stages of their maturation in vitro. Moreover, we examined the modulation of retinoic acid-induced NP differentiation to astrocytes and neurons by mu, [D-ala(2), mephe(4), gly-ol(5)] enkephalin, or kappa, U69, 593, opioids. Both opioid agonists inhibited NP-derived neurogenesis and astrogenesis via their corresponding receptors as determined by immunocytochemistry. By administering selective inhibitors, we found that opioid inhibition of NP-derived astrogenesis was driven via extracellular-signal regulated kinase (ERK), while the p38 mitogen-activated protein kinase pathway was implicated in opioid attenuation of neurogenesis. In addition, mu and kappa opioids stimulated oligodendrogenesis from NP-derived NG2(+) oligodendrocyte progenitors via both ERK and p38 signaling pathways. Accordingly, both opioids induced ERK phosphorylation in NG2(+) cells. These results indicate that small molecules, such as MOR and KOR agonists may play a modulatory role in NP terminal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Animais , Antígenos/metabolismo , Benzenoacetamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Interações Medicamentosas , Embrião de Mamíferos , Células-Tronco Embrionárias/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Peptídeos/farmacologia , Proteoglicanas/metabolismo , Pirrolidinas/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides mu/antagonistas & inibidores , Fatores de Tempo , Tretinoína/farmacologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...