Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Nat Rev Microbiol ; 17(9): 533-545, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209399

RESUMO

Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing data into actionable information. There is, however, a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonization, comparability and validation. In this Review, we outline the current landscape of WGS pipelines and applications, and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/normas , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/microbiologia , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/normas , Farmacorresistência Bacteriana , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Epidemiologia Molecular/métodos , Epidemiologia Molecular/normas , Mycobacterium tuberculosis/genética , Filogenia , Guias de Prática Clínica como Assunto , Tuberculose/epidemiologia
3.
EBioMedicine ; 43: 356-369, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31047860

RESUMO

BACKGROUND: The diagnosis of multidrug resistant and extensively drug resistant tuberculosis is a global health priority. Whole genome sequencing of clinical Mycobacterium tuberculosis isolates promises to circumvent the long wait times and limited scope of conventional phenotypic antimicrobial susceptibility, but gaps remain for predicting phenotype accurately from genotypic data especially for certain drugs. Our primary aim was to perform an exploration of statistical learning algorithms and genetic predictor sets using a rich dataset to build a high performing and fast predicting model to detect anti-tuberculosis drug resistance. METHODS: We collected targeted or whole genome sequencing and conventional drug resistance phenotyping data from 3601 Mycobacterium tuberculosis strains enriched for resistance to first- and second-line drugs, with 1228 multidrug resistant strains. We investigated the utility of (1) rare variants and variants known to be determinants of resistance for at least one drug and (2) machine and statistical learning architectures in predicting phenotypic drug resistance to 10 anti-tuberculosis drugs. Specifically, we investigated multitask and single task wide and deep neural networks, a multilayer perceptron, regularized logistic regression, and random forest classifiers. FINDINGS: The highest performing machine and statistical learning methods included both rare variants and those known to be causal of resistance for at least one drug. Both simpler L2 penalized regression and complex machine learning models had high predictive performance. The average AUCs for our highest performing model was 0.979 for first-line drugs and 0.936 for second-line drugs during repeated cross-validation. On an independent validation set, the highest performing model showed average AUCs, sensitivities, and specificities, respectively, of 0.937, 87.9%, and 92.7% for first-line drugs and 0.891, 82.0% and 90.1% for second-line drugs. Our method outperforms existing approaches based on direct association, with increased sum of sensitivity and specificity of 11.7% on first line drugs and 3.2% on second line drugs. Our method has higher predictive performance compared to previously reported machine learning models during cross-validation, with higher AUCs for 8 of 10 drugs. INTERPRETATION: Statistical models, especially those that are trained using both frequent and less frequent variants, significantly improve the accuracy of resistance prediction and hold promise in bringing sequencing technologies closer to the bedside.


Assuntos
Aprendizado de Máquina , Modelos Estatísticos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados Genéticas , Evolução Molecular , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Variação Genética , Genoma Bacteriano , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
4.
Sci Rep ; 8(1): 15382, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337678

RESUMO

Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) ( https://github.com/CPTR-ReSeqTB/UVP ) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Sequenciamento Completo do Genoma/métodos , Antituberculosos/farmacologia , Genoma Bacteriano , Genótipo , Humanos , Bases de Conhecimento , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
5.
PeerJ ; 6: e5515, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155371

RESUMO

BACKGROUND: It is possible to detect bacterial species in shotgun metagenome datasets through the presence of only a few sequence reads. However, false positive results can arise, as was the case in the initial findings of a recent New York City subway metagenome project. False positives are especially likely when two closely related are present in the same sample. Bacillus anthracis, the etiologic agent of anthrax, is a high-consequence pathogen that shares >99% average nucleotide identity with Bacillus cereus group (BCerG) genomes. Our goal was to create an analysis tool that used k-mers to detect B. anthracis, incorporating information about the coverage of BCerG in the metagenome sample. METHODS: Using public complete genome sequence datasets, we identified a set of 31-mer signatures that differentiated B. anthracis from other members of the B. cereus group (BCerG), and another set which differentiated BCerG genomes (including B. anthracis) from other Bacillus strains. We also created a set of 31-mers for detecting the lethal factor gene, the key genetic diagnostic of the presence of anthrax-causing bacteria. We created synthetic sequence datasets based on existing genomes to test the accuracy of a k-mer based detection model. RESULTS: We found 239,503 B. anthracis-specific 31-mers (the Ba31 set), 10,183 BCerG 31-mers (the BCerG31 set), and 2,617 lethal factor k-mers (the lef31 set). We showed that false positive B. anthracis k-mers-which arise from random sequencing errors-are observable at high genome coverages of B. cereus. We also showed that there is a "gray zone" below 0.184× coverage of the B. anthracis genome sequence, in which we cannot expect with high probability to identify lethal factor k-mers. We created a linear regression model to differentiate the presence of B. anthracis-like chromosomes from sequencing errors given the BCerG background coverage. We showed that while shotgun datasets from the New York City subway metagenome project had no matches to lef31 k-mers and hence were negative for B. anthracis, some samples showed evidence of strains very closely related to the pathogen. DISCUSSION: This work shows how extensive libraries of complete genomes can be used to create organism-specific signatures to help interpret metagenomes. We contrast "specialist" approaches to metagenome analysis such as this work to "generalist" software that seeks to classify all organisms present in the sample and note the more general utility of a k-mer filter approach when taxonomic boundaries lack clarity or high levels of precision are required.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30082293

RESUMO

Resistance to the first-line antituberculosis (TB) drug isoniazid (INH) is widespread, and the mechanism of resistance is unknown in approximately 15% of INH-resistant (INH-R) strains. To improve molecular detection of INH-R TB, we used whole-genome sequencing (WGS) to analyze 52 phenotypically INH-R Mycobacterium tuberculosis complex (MTBC) clinical isolates that lacked the common katG S315T or inhA promoter mutations. Approximately 94% (49/52) of strains had mutations at known INH-associated loci that were likely to confer INH resistance. All such mutations would be detectable by sequencing more DNA adjacent to existing target regions. Use of WGS minimized the chances of missing infrequent INH resistance mutations outside commonly targeted hotspots. We used recombineering to generate 12 observed clinical katG mutations in the pansusceptible H37Rv reference strain and determined their impact on INH resistance. Our functional genetic experiments have confirmed the role of seven suspected INH resistance mutations and discovered five novel INH resistance mutations. All recombineered katG mutations conferred resistance to INH at a MIC of ≥0.25 µg/ml and should be added to the list of INH resistance determinants targeted by molecular diagnostic assays. We conclude that WGS is a useful tool for detecting uncommon INH resistance mutations that would otherwise be missed by current targeted molecular testing methods and suggest that its use (or use of expanded conventional or next-generation-based targeted sequencing) may provide earlier diagnosis of INH-R TB.


Assuntos
Antituberculosos/farmacologia , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Mutação/genética , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética
7.
Pathog Dis ; 76(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846561

RESUMO

There are many resources available to mycobacterial researchers, including culture collections around the world that distribute biomaterials to the general scientific community, genomic and clinical databases, and powerful bioinformatics tools. However, many of these resources may be unknown to the research community. This review article aims to summarize and publicize many of these resources, thus strengthening the quality and reproducibility of mycobacterial research by providing the scientific community access to authenticated and quality-controlled biomaterials and a wealth of information, analytical tools and research opportunities.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Infecções por Mycobacterium/microbiologia , Mycobacterium/genética , Mycobacterium/patogenicidade , Humanos , Reprodutibilidade dos Testes
8.
PLoS Biol ; 16(12): e3000099, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30596645

RESUMO

A personalized approach based on a patient's or pathogen's unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the "Open-Stand.org principles for collaborative open standards development." With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews.


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Animais , Comunicação , Biologia Computacional/normas , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão/tendências , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas , Software , Fluxo de Trabalho
9.
Eur Respir J ; 50(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29284687

RESUMO

A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Interpretação Estatística de Dados , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Fenótipo , Análise de Sequência de DNA , Revisões Sistemáticas como Assunto , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
10.
PeerJ ; 3: e806, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780762

RESUMO

Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups.

11.
Curr Psychiatry Rep ; 15(4): 349, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435969

RESUMO

Determining the genetic architecture of liability for complex neuropsychiatric disorders like autism spectrum disorders and schizophrenia poses a tremendous challenge for contemporary biomedical research. Here we discuss how genetic studies first tested, and rejected, the hypothesis that common variants with large effects account for the prevalence of these disorders. We then explore how the discovery of structural variation has contributed to our understanding of the etiology of these disorders. The rise of fast and inexpensive oligonucleotide sequencing and methods of targeted enrichment and their influence on the search for rare genetic variation contributing to complex neuropsychiatric disorders is the next focus of our article. Finally, we consider the technical challenges and future prospects for the use of next-generation sequencing to reveal the complex genetic architecture of complex neuropsychiatric disorders in both research and the clinical settings.


Assuntos
Transtorno Autístico/genética , Variação Genética , Neuropsicologia/métodos , Esquizofrenia/genética , Análise de Sequência de DNA/métodos , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...