Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
MethodsX ; 12: 102726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707214

RESUMO

Cortisol is the main stress biomarker used for zebrafish. However, zebrafish small size made it challenging to extract cortisol without harming or killing the fish. Thus, researchers adopted a terminal method, the trunk cortisol, as standard practice. Here, we developed and validated an alternative and minimally invasive technique for measuring cortisol in the skin mucus of adult zebrafish, using a commercial enzyme-linked immunosorbent assay (ELISA). For this, AB zebrafish were randomly assigned to a precision, accuracy, and specificity test. Each sample contained the skin mucus of five to ten fish or one fish trunk. The cortisol was extracted using methanol as organic solvent. The results obtained showed an adequate precision (intra-assay coefficient of variation (CV) <15%; inter-assay CV = 26%), accuracy (CV <120%), and specificity (r2 =0.96-0.98) for skin mucus cortisol levels, as well as for trunk cortisol.•A commercial ELISA was analytically validated to measure cortisol in the skin mucus of zebrafish.•Skin mucus cortisol is a non-terminal method that reduce the number of animals used and allows longitudinal studies.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675417

RESUMO

In the last decade, a considerable number of studies have broadened our knowledge of the nociceptive mechanisms of pain, a global health problem in both humans and animals. The use of herbal compounds such as eugenol, menthol, thymol, and carvacrol as analgesic agents has accompanied the growing interest in this area, offering a possible solution for this complex problem. Here, we aimed to explore how these natural substances-at three different concentrations (2, 5 and 10 mg/L)-affect the pain responses in zebrafish (Danio rerio) larvae exposed to 0.05% acetic acid (AA) for 1 min. By analysing the activity of acetylcholinesterase (AChE), 5'-ectonucleotidase and NTPDases, as well as aversion and exploratory behaviours, it was observed that that although all substances were effective in counteracting the pain stimulus, the concentration range within which they do so might be very limited. Eugenol, despite its acknowledged properties in fish anaesthesia, failed to alleviate the pain stimulus at low concentrations. Contrastingly, menthol exhibited the most promising results at the lowest concentrations tested. Overall, it is concluded that menthol might be a good analgesic for this species, qualifying it as a substance of interest for prospective studies.

3.
Toxics ; 12(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38250991

RESUMO

2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.

4.
Methods Mol Biol ; 2753: 39-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285333

RESUMO

Developmental toxicology is a constantly evolving research field which needs to attend to a complex underlying regulatory network. In order to ensure human health and environmental safety, new substances have to be tested for toxic effects on reproduction and development, before being commercialized. Traditional in vivo mammalian models represent the intricacy of human development and provide more adequately an assessment of the interaction of chemical compounds with the reproductive system. However, in the last years, the directives are to reduce the use of vertebrate animals, promoting their use only as a last resort. Consequently, the interest on the development and validation of alternative tests, able to cover the various aspects of the reproductive cycle, has significantly increased. Reproductive toxicity is probably the most difficult endpoint to be replaced by alternative assays, since it should provide information on mechanism interactions essential for female and male fertility and also knowledge on the animal development during the first phases of its life cycle. This complexity explains the slow progress in implementing alternative models for reproductive toxicity safety assays. Alternative test models may be based on in vitro systems and nonmammalian animal models. Many biological processes have been successfully addressed using in vitro models, opening the possibility to study the interference of teratogenic compounds. Their validation and implementation have lagged behind, in part because of difficulties in establishing their predictability. Nevertheless, the advance toward the process of validation is crucial to replace and reduce the use of living animals. Based on the present state of the art, it is not probable that such testing strategies will completely replace the need to assess reproductive toxicity in vivo in the near future, but they will contribute to reduce animal tests and will provide important information. In this chapter, the approved guidelines for standard methods and alternative methods, according to their regulatory and scientific status, are enumerated and briefly described.


Assuntos
Reprodução , Teratogênese , Animais , Humanos , Feminino , Masculino , Bioensaio , Modelos Animais , Probabilidade , Mamíferos
5.
Methods Mol Biol ; 2753: 459-468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285359

RESUMO

Geometric morphometrics (GM) enables a quantitative study of shapes and forms allowing the identification and characterization of teratogenic malformations. The GM methodology offers several advantages in comparison to traditional biometric methods, such as higher detail and precision analysis. In this chapter, we describe the recent application of the Procrustes method with ImageJ and MorphoJ programs in the characterization of developmental malformations. With this methodology, we are a step closer to being able to assign molecular pathways or unique signatures to a specific teratogen according to the produced phenotypes or to cluster unknown compounds.


Assuntos
Besouros , Teratogênese , Animais , Teratogênicos/toxicidade , Fenótipo
6.
Methods Mol Biol ; 2753: 515-532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285364

RESUMO

Western blot is a versatile and widely used technique in many areas of molecular biology and biotechnology for studying different protein characteristics. In general, the Western blot technique involves the extraction of proteins from the samples such as cells or tissues, which, after denaturation, are separated by molecular size using electrophoresis. The protein is then transferred to a membrane, typically PVDF or nitrocellulose, which, after blocking, is probed with specific antibodies labeled with a detection agent. Overall, this allows the recognition and binding to the target protein allowing the visualization of bands, a step called immunodetection. Over the years, new approaches to the Western blotting technique have been proposed to overcome performance limitations.This chapter describes a routine procedure for protein evaluation in zebrafish (Danio rerio) larvae, a widely used animal model for predicting the toxicity of drugs, by using a chromogenic substrate and allowing the proper execution of the technique without the costly equipment needed for detection.


Assuntos
Perciformes , Peixe-Zebra , Animais , Larva , Biologia Molecular , Biotecnologia , Western Blotting
7.
Methods Mol Biol ; 2753: 483-493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285361

RESUMO

The stress response, mainly mediated by cortisol, plays a critical role in the regulation of physiological and behavioral homeostasis through a variety of mechanisms. Different aquatic animal models have been widely employed to understand the pathobiology of stress and stress-related brain disorders. The early life stress can affect the hypothalamic-pituitary-interrenal (HPI) axis and induce cellular and molecular impairments that impact the brain functioning later in life. However, these alterations have been poorly explored mainly due to the lack of suitable models. In this chapter, the vortex flow stimulation, an acute stress that causes a forced swimming and activates the HPI axis, is described and its correlations with behavioral outputs reported. To this end, the early life stages of zebrafish are used as animal models for modeling stress disorders experimentally. The behavioral despair model can be employed as an initial screening tool for assessing neural circuit activation and motor alterations. Taken together, the implementation of this strategy in this animal model allows the analysis of stress responses in a simple manner and its correlation with neural circuitries and motor alterations.


Assuntos
Hidrocortisona , Perciformes , Animais , Peixe-Zebra , Encéfalo , Homeostase , Larva , Transtornos Psicofisiológicos
8.
Animals (Basel) ; 13(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508087

RESUMO

Animal transport is currently a stressful procedure. Therefore, animal-based indicators are needed for reliable and non-invasive welfare assessment. Saliva is a biospecimen with potential validity for the determination of cortisol and oxidative stress, although its use to assess calf welfare during transport has never been tested. Similarly, the applicability and reliability of infrared thermography to assess temperature change during calves' transport have never been evaluated. These objectives were outlined following the known and growing need to identify non-invasive methodologies for stress assessment in bovines. This study was conducted on 20 calves of the Arouquesa autochthone breed, at about nine months of age, during their transport to slaughter. For each animal, saliva samples and thermographic images of the eye were collected at three time points: before transport, after transport, and at slaughter. The saliva was then processed to measure cortisol levels and oxidative stress parameters (reactive oxygen species, thiobarbituric acid reactive substance, carbonyls, and advanced oxidation protein products), and the images were analyzed using FLIR Tools+ software. There was an increase in cortisol concentration and oxidative stress parameters (reactive oxygen species, thiobarbituric acid reactive substance, carbonyls, and advanced oxidation protein products) in saliva after transport. An increase in eye temperature triggered by transport was also observed. The cortisol and eye temperature results at slaughter were returned to values similar to those before transport; however, the values of oxidative stress remained increased (mainly TBARS values). These non-invasive techniques seem to be reliable indicators of stress in bovine transport, and oxidative stress parameters in saliva may be a persistent marker for welfare assessment.

9.
Antioxidants (Basel) ; 12(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37372027

RESUMO

Thymol (THY) and 24-epibrassinolide (24-EPI) are two examples of plant-based products with promising therapeutic effects. In this study, we investigated the anti-inflammatory, antioxidant and anti-apoptotic effects of the THY and 24-EPI. We used zebrafish (Danio rerio) larvae transgenic line (Tg(mpxGFP)i114) to evaluate the recruitment of neutrophils as an inflammatory marker to the site of injury after tail fin amputation. In another experiment, wild-type AB larvae were exposed to a well known pro-inflammatory substance, copper (CuSO4), and then exposed for 4 h to THY, 24-EPI or diclofenac (DIC), a known anti-inflammatory drug. In this model, the antioxidant (levels of reactive oxygen species-ROS) and anti-apoptotic (cell death) effects were evaluated in vivo, as well as biochemical parameters such as the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), the biotransformation activity of glutathione-S-transferase, the levels of glutathione reduced and oxidated, lipid peroxidation, acetylcholinesterase activity, lactate dehydrogenase activity, and levels of nitric acid (NO). Both compounds decreased the recruitment of neutrophils in Tg(mpxGFP)i114, as well as showed in vivo antioxidant effects by reducing ROS production and anti-apoptotic effects in addition to a decrease in NO compared to CuSO4. The observed data substantiate the potential of the natural compounds THY and 24-EPI as anti-inflammatory and antioxidant agents in this species. These results support the need for further research to understand the molecular pathways involved, particularly their effect on NO.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37044365

RESUMO

The molecular processes behind Parkinson's disease (PD) remain under debate although mitochondrial oxidative stress generation has been proposed as a fundamental contributor. In this context, different brassinosteroids have shown neuroprotective action hampering oxidative stress. This study determined the effects of 24-Epibrassinolide (24-EPI) against 6-hydroxydopamine- (6-OHDA-) induced toxicity using the zebrafish embryonic model. Embryos were exposed to 250 µM 6-OHDA or co-exposed to 24-EPI (0.01, 0.1, and 1 µM) for 3 days, starting at 48 h post-fertilization (hpf). During the experimental period, developmental parameters were assessed. At 120 hpf, larvae were tested for behavioural phenotypes with different biochemical biomarkers and tyrosine hydroxylase- (TH-) reactive neurons being also assessed. Exposure to 6-OHDA induced a decrease in body length while no other morphological phenotypes were noticed. A significant decrease in TH-neurons immunofluorescence, a decreased locomotion (speed and distance moved), and an increased absolute angle were found in 6-OHDA-exposed embryos. These outcomes were rescuable by the co-exposure with 24-EPI. Surprisingly, the direct effects of 6-OHDA on reactive oxygen species (ROS) were not observed in the present study supporting the involvement of other molecular pathways in the 6-OHDA-induced effects during embryonic development. Overall, the results obtained confirm PD-like symptoms induced by 6-OHDA during embryonic development which were reverted by 24-EPI. Although antioxidative signalling pathways deserve further scrutiny, the findings support the further investigation of 24-EPI neuroprotective effects.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Oxidopamina/toxicidade , Peixe-Zebra/metabolismo , Brassinosteroides/farmacologia , Estresse Oxidativo
11.
Food Chem Toxicol ; 174: 113689, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36858299

RESUMO

Punica granatum L. (pomegranate) has been used in functional foods due to its various health benefits. However, the in vivo biological potential of its leaf remains little known. This study has aimed to characterize the antineoplastic and toxicological properties of using pomegranate leaf infusion (PLI) on transgenic mice carrying human papillomavirus (HPV) type 16 oncogenes. Thirty-eight mice were divided into 3 wild-type (WT) and 3 transgenic (HPV) groups, with exposure to 0.5% PLI, 1.0% PLI, and water. The animals' body weight, drink and food consumption were recorded. Internal organs, skin samples and intracardiac blood were collected to evaluate toxicological parameters, neoplastic lesions and oxidative stress. The results indicated that PLI was safe as no mortality, no behavioural disorders and no significant differences in the levels of microhematocrit, serum biochemical markers, internal organ histology, and oxidative stress was found among the WT groups. Histological analysis revealed that HPV animals that consumed PLI exhibited reduced hepatic, renal and cutaneous lesions compared with the HPV control group. Low-dose PLI consumption significantly diminished renal hydronephrosis lesions and relieved dysplasia and carcinoma lesions in the chest skin. Oxidative stress analysis showed that low-dose PLI consumption may have more benefits than high-dose PLI. These results suggest that oral administration of PLI has the potential to alleviate non-neoplastic and neoplastic lesions against HPV16-induced organ and skin injuries, though this requires further scientific research studies.


Assuntos
Antineoplásicos , Infecções por Papillomavirus , Punica granatum , Camundongos , Animais , Humanos , Camundongos Transgênicos , Papillomavirus Humano 16 , Infecções por Papillomavirus/patologia , Folhas de Planta
12.
Animals (Basel) ; 13(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36978661

RESUMO

Zebrafish is a valuable model for neuroscience research, but the housing conditions to which it is exposed daily may be impairing its welfare status. The use of environmental enrichment and the refinement of methodology for cortisol measurement could reduce stress, improving its welfare and its suitability as an animal model used in stress research. Thus, this study aimed to evaluate (I) the influence of different housing conditions on zebrafish physiology and behavior, and (II) skin mucus potential for cortisol measurement in adult zebrafish. For this, AB zebrafish were raised under barren or enriched (PVC pipes and gravel image) environmental conditions. After 6 months, their behavior was assessed by different behavioral paradigms (shoaling, white-black box test, and novel tank). The physiological response was also evaluated through cortisol levels (whole-body homogenates and skin mucus) and brain oxidative stress markers. The results revealed that enriched-housed fish had an increased nearest neighbors' distance and reduced activity. However, no effect on body length or stress biomarkers was observed; whole-body and skin mucus cortisol levels had the same profile between groups. In conclusion, this study highlights the skin mucus potential as a matrix for cortisol quantification, and how housing conditions could influence the data in future studies.

13.
Environ Sci Pollut Res Int ; 30(17): 49567-49576, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781667

RESUMO

The presence of new psychoactive substances (NPS), like metaphedrone (3-MMC), in aquatic environments raises concern about the potential negative effects on ichthyofauna. Therefore, the aim of this study was to evaluate the potential effects of 3-MMC on zebrafish embryonic development, behaviour, and DNA integrity. For that, embryos were exposed during 96 h post-fertilization to 3-MMC (0.1, 1, 10, and 100 µg/L). Overall, an increase in the eye area of zebrafish larvae was observed for the concentrations of 1 µg/L (increase of 24%) and 100 µg/L (increase of 25%) in comparison with the control group. Genetic damage was noted at the highest concentration (100 µg/L) with an increase of DNA damage (increase of 48%) and hyperactivity and disorganised swimming pattern characterised by an increase in speed (increase of 49%), total distance moved (increase of 53%), and absolute turn angle (increase of 48%) of zebrafish larvae. These findings pointed that, at environmental low levels, 3-MMC harmful effects are not expected to occur during critical development life stages of fish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Natação , Larva
14.
Artigo em Inglês | MEDLINE | ID: mdl-36682642

RESUMO

Nicotine is a highly addictive substance that can cause teratogenic impacts in the embryo through redox-dependent pathways. As antioxidants, naturally occurring chemicals can protect cells from redox imbalance. The purpose of this study was to evaluate the effectiveness of 24-epibrassinolide (24-EPI), a natural brassinosteroid with well-known antioxidant properties, in protecting zebrafish embryos against nicotine's teratogenic effects. For 96 h, embryos (2 h post-fertilization - hpf) were exposed to 100 µM nicotine, co-exposed with 24-EPI (0.01, 0.1, and 1 µM), and 24-EPI alone (1 µM). Lethal and sublethal developmental characteristics were evaluated during exposure. Biochemical tests were performed at the conclusion of the exposure, and distinct behavioural paradigms were analysed 24 h later. Nicotine exposure resulted in a higher proportion of larvae with deformities, which were decreased following co-exposure to 24-EPI. Nicotine exposure also caused an increase in oxidative stress as observed by the increased activity of superoxide dismutase and catalase accompanied by an increase in the malondialdehyde levels. Besides, metabolic changes were noticed as observed by the increased lactate dehydrogenase activity that were hypothesised to be associated to nicotine-induced hypoxia which may be responsible for the increased oxidative damage. In addition, locomotor deficits were observed as well as a decrease in the acetylcholinesterase activity denoting nicotine-induced cognitive dysfunction. However, co-exposure to 24-EPI alleviated behavioural deficits and improved nicotine-induced emotional states. Overall, and although further studies are required to clarify these effects, 24-EPI showed promising ameliorative properties against the teratogenic effects induced by nicotine.


Assuntos
Teratogênese , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Brassinosteroides/farmacologia , Nicotina/toxicidade , Nicotina/metabolismo , Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Embrião não Mamífero
15.
Chemosphere ; 310: 136895, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265700

RESUMO

Microplastics (MPs) are a big and growing environmental concern, with studies showing sublethal to acute biological impacts on typical aquatic organisms. However, little is known about the biological effects of naturally weathered MPs, particularly focusing on mitochondria dysfunction as the key trigger of the biological effects. Therefore, in this study, naturally weathered MPs were produced from day-to-day life products, characterized, and chronically exposed (21 days) to adult zebrafish at the concentration of 0.1 and 1 mg/L. Locomotion and unconditioned anxiety-like behaviour was assessed. Mitochondrial respiration, membrane potential, mitochondrial complex activity and oxidative-related parameters were evaluated in the brain and liver. The results revealed the weathered MPs as a copolymer of propylene and ethylene that induced anxiety-like behaviour. There was an increase in brain catalase activity while the brain lactate dehydrogenase activity was inhibited after exposure to 1 mg/L. Brain glutathione levels were increased while their ratio was not affected. Mitochondrial respiratory chain complex Ⅱ and IV were also significantly decreased in the brain, although not compromising mitochondrial function. On the other hand, exposure to 1 mg/L caused a deficiency in liver mitochondrial respiration and decreased mitochondrial membrane potential, which were associated with the mitochondrial respiratory chain inhibition. An increase in hepatic superoxide dismutase and catalase activity was noticed, supporting the occurrence of ROS-induced ROS release as the potential trigger for the mitochondrial dysfunction. Overall, these findings highlight the potential indirect and cumulative environmental effects these particles may pose to aquatic ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Peixe-Zebra/metabolismo , Catalase/metabolismo , Plásticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ecossistema , Estresse Oxidativo , Mitocôndrias/metabolismo , Antioxidantes/metabolismo , Poluentes Químicos da Água/metabolismo
16.
Biology (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290337

RESUMO

The use of zebrafish (Danio rerio) as an animal model is growing and occurs in a wide range of scientific areas. Therefore, researchers need better and more appropriate anaesthetics for stressful and/or painful procedures to prevent unpleasant experiences. Thus, we aimed to study if adult zebrafish displayed aversion-associated behaviours (conditioned place aversion) and alterations in cortisol levels when exposed to equipotent concentrations of MS222, propofol/lidocaine, clove oil, or etomidate. Adult AB zebrafish (mixed-sex, N = 177) were randomly assigned to MS222 (150 mg/L), Propofol/Lidocaine (5 mg/L propofol + 150 mg/L lidocaine), Clove Oil (45 mg/L), or Etomidate (2 mg/L) groups. The conditioned place aversion test was used to assess behavioural aversion. Only etomidate resulted in a similar aversion to the positive control group (HCl; pH = 3). Cortisol levels were measured 5 and 15 min after loss of equilibrium. Etomidate induced low levels of cortisol by impairing its synthesis, whereas all the other groups had similar cortisol levels. Based on our data, etomidate was ruled out as an alternative to MS222, as it showed an aversive profile. The remaining protocols were not innocuous, displaying a weak aversive profile when compared to the positive control. In conclusion, a combination of propofol with lidocaine, clove oil, and MS222 were valid candidates for use as anaesthetic protocols.

17.
Chemosphere ; 308(Pt 2): 136430, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113654

RESUMO

The use of glyphosate-based herbicides (GBH) has increased dramatically, being currently the most used herbicides worldwide. Glyphosate acts as a chelating agent, capable of chelate metals. The synergistic effects of metals and agrochemicals may pose an environmental problem as they have been shown to induce neurological abnormalities and behavioural changes in aquatic species. However, as their ecotoxicity effects are poorly understood, evaluating the impacts of GBH complexed with metals is an ecological priority. The main objective of the study was to evaluate the potentially toxic effects caused by exposure to a GBH (1 µg a.i. mL-1), alone or complexed with metals (Copper, Manganese, and Zinc (100 µg L-1)), at environmentally relevant concentrations, during the early period of zebrafish (Danio rerio) embryo development (96 h post-fertilization), a promising model for in vivo developmental studies. To clarify the mechanisms of toxicity involved, lethal and sublethal development endpoints were assessed. At the end of the exposure, biochemical and cell death parameters were evaluated and, 24 h later, different behavioural responses were assessed. The results showed that metals induced higher levels of toxicity. Copper caused high mortality, low hatching, malformations, and changes in biochemical parameters, such as decreased Catalase (CAT) activity, increased Glutathione Peroxidase (GPx), Glutathione S-Transferase (GST), reduced Glutathione (GSH) and decreased Acetylcholinesterase (AChE) activity, also inducing apoptosis and changes in larval behaviour. Manganese increased the activity of SODs enzymes. Zinc increased mortality, reactive oxygen species (ROS) levels, superoxide dismutase activity (SODs) and caused a decrease in AChE activity. Embryos/larvae exposed to the combination of GBH/Metal also showed teratogenic effects during their development but in smaller proportions than the metal alone. Although more studies are needed, the results suggest that GBH may interfere with the mechanisms of metal toxicity at the biochemical, physiological, and behavioural levels of zebrafish.


Assuntos
Herbicidas , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Embrião não Mamífero , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Zinco/metabolismo , Glifosato
18.
In Vivo ; 36(5): 2173-2185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099085

RESUMO

BACKGROUND/AIM: Obesity currently affects the whole world, with greater incidence in high-income countries, with vast economic and social costs. Broccoli harvest generates many by-products equally rich in bioactive compounds with potential anti-obesity effects. This study aimed to evaluate the anti-obesity effects of broccoli by-products flour (BF) in obese mice. MATERIALS AND METHODS: A commercial high-fat diet formulation (representing a Western diet) was used to induce obesity in mice. BF (0.67% or 1.34% weight/weight) was incorporated as a chemoprevention compound into a control and a hypercholesterolemic diet, at two different concentrations, and fed for 14 weeks to C57BL/6J mice. For a therapeutic approach, two groups were fed with the hypercholesterolemic diet for 10 weeks, and then fed with BF-supplemented diets in the last 4 weeks of the study. RESULTS: BF supplementation helped to maintain a lower body weight, reduced adipose tissue accumulation, and enhanced the basal activity of superoxide dismutase and glutathione S-transferase. Although BF supplementation tended to reduce the relative liver weight increased by the Western diet, the differences were not significant. CONCLUSION: BF appears to have a beneficial effect in preventing weight gain and fat accumulation induced by hypercholesterolemic diets.


Assuntos
Brassica , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia
19.
Ecotoxicol Environ Saf ; 242: 113926, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930835

RESUMO

The knowledge regarding the neurological and behavioral toxic effects associated with microplastics (MPs) and heavy metals exposure is still scarce. The present study aimed to evaluate the potential chronic (30 days) toxic effects of MPs (2 mg/L) and copper (Cu, 25 µg/L), alone or combined, in the zebrafish (Danio rerio) brain antioxidant system, cell proliferation/death, cholinergic-, serotonergic- and dopaminergic pathways and, consequently, in locomotor, anxiety, and social behaviors. Our findings showed that MPs and Cu exposure modulated the antioxidant system of zebrafish brain, with superoxide dismutase (SOD) and glutathione reductase (GR) having higher activity in the Cu25 +MPs group, but glutathione peroxidase (GPx) being inhibited in MPs, Cu25 and Cu25 +MPs. Moreover, an increase in acetylcholinesterase (AChE) activity was observed in all exposed groups. When considering neurogenesis genes, a downregulation of proliferating cell nuclear antigen (pcna) was noticed in zebrafish exposed to the mixture treatment, while for dopaminergic system-related genes (th and slc6a3) an upregulation was observed in MPs, Cu25 and Cu25 +MPs groups. An increase in apoptosis-related genes expression (casp8, casp9 and casp3) was observed in the MPs exposed group. Changes in zebrafish behavior, particularly in mean speed, total distance moved, inactivity in the aquaria, and social/shoaling behavior was also observed in the MPs and Cu exposed groups. Overall, our results highlight the multiplicity of toxic effects of MPs, alone or combined with Cu, in zebrafish brain, namely apoptosis and alterations in adult neurogenesis, neurocircuits and, consequently, behavior.


Assuntos
Microplásticos , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Encéfalo , Cobre/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Plásticos/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
20.
Environ Toxicol Pharmacol ; 94: 103934, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35868620

RESUMO

Aluminium (Al) is among the most abundant metals in nature, and its presence in the environment is further increasing by anthropogenic activities. In water bodies, the Al concentrations ranged between 0.001 and 50 mg/L, raising concerns about the health of aquatic organisms. For this reason, zebrafish was chosen as the model, since it is well suited for ecotoxicological studies. Adult specimens were exposed to 11 mg/L of Al for 10, 15 and 20 days to assess both the morphology and the oxidative state of muscle tissue. Considering the involvement of ROS, the activity of the main antioxidant enzymes, metallothioneins contents, but also oxidative damage and enzymes involved in energy consumption and neuromuscular transmission were assessed. Collected data showed an increase in the thickness of the endomysium and resorbed myofibrils in the organisms exposed to Al for 10 days, and an increase of myotomes' size in the organisms exposed to Al for 15 days. Moreover, the organisms exposed for less time to Al, it was evident an activation of anaerobic metabolism and the increased activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and glutathione S-transferases. However, these effects stabilized with increasing exposure time. In addition, only after 20 days of treatment did the oxidative damage to the proteins and the activity of acetylcholinesterase increase while the levels of metallothioneins and the lipid peroxidation were lower for all treated animals when compared to the control group. Overall, the biochemical and histological changes induced by aluminium exposure in the muscular tissue represent a relevant contribution to understanding the environmental risk due to the diffusion of this metal within the aquatic compartment.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Acetilcolinesterase/metabolismo , Alumínio/toxicidade , Animais , Antioxidantes/farmacologia , Músculos/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...