Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2304-2311, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165713

RESUMO

The electronic structure of the fumarate, maleate, and succinate dianions in the context of their stability is determined in a joint experimental and computational study with X-ray absorption spectroscopy and resonant inelastic X-ray scattering at the O K-edge. The study reveals differences in the electronic states and molecular orbitals of the three molecules. In particular, maleate has a non-degenerate oxygen core-orbital with an energy difference of approximately 0.15 eV, visible in a two peak structure in XAS. Polarization-dependent RIXS provides information on the orientation of the occupied valence molecular orbitals with respect to the carboxylate group plane and shows a gradually increasing energy gap between the HOMO and excited π* LUMO from fumarate to maleate to succinate. We also demonstrate the energy excitation dependence of the RIXS spectra of maleate, with the total inelastic RIXS profile shifting towards higher energy loss as the detuning is increased from negative to positive values. Our findings show that maleate is less stable than fumarate and succinate due to the presence of electronic density on its HOMO orbital on the CC bond between carboxylate groups, which can lead to weaker bonding of maleate with molecules or ions.

2.
J Phys Chem Lett ; 15(1): 241-247, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38164541

RESUMO

Photosolvation is a type of ligand substitution reaction started by irradiation of a solution with light, triggering the replacement of a ligand with a molecule from the solvent. The excited state is created through many possible pathways. For the class of hexacyanides of groups 8 and 9 of the periodic table, irradiation in the ligand field band is followed by intersystem crossing to the lowest excited triplet state, which we propose to mediate the photoaquation reaction in this class of complexes. In this study, we present time-resolved X-ray absorption data showing indications of the triplet intermediate state in the cobalt(III) hexacyanide complex and we discuss general aspects of the photoaquation reaction in comparison with reported data on the isoelectronic iron(II) hexacyanide. Quantum chemical calculations are analyzed and suggest that the nature of the lowest excited triplet state in each complex can explain the drastically different rate of reactions observed.

3.
J Phys Chem Lett ; 14(39): 8765-8770, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738662

RESUMO

Black phosphorus possesses useful two-dimensional (2D) characteristics of van der Waals coupled materials but additionally features an in-plane anisotropic puckered layer structure that deviates from common 2D materials. Three distinct directions exist within the lattice of black phosphorus: the in-plane armchair and zigzag directions and the out-of-plane direction, with each distinct phosphorus 3p partial density of states. This structural anisotropy is imprinted onto various collective long-range properties, while the extent to which local electronic processes are governed by this directionality is unclear. At the P L1 edge, the directional selectivity of the core-hole clock method was used to probe the local charge transfer dynamics of electrons excited into the 3p-derived conduction band on an attosecond time scale. Here we show that the surprisingly small anisotropy of 3p electron transfer times reflects the similarly small differences in the 3p-derived unoccupied density of states caused by the underlying phosphorus bonding angles within the puckered layers.

4.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37493134

RESUMO

We present a time-dependent theory for non-resonant x-ray emission spectrum (XES) and normal Auger spectrum (NAS) calculation, based on a fully quantum description of nuclear dynamics using the vibrational wave packet concept. We compare two formulations of the time-dependent theory, either employing a two-time propagation scheme or using spectral integration over the electron energy continuum. We find that the latter formulation is more efficient for numerical simulations, providing a reasonable accuracy when the integration step is shorter than the lifetime broadening of the core-ionized state. We demonstrate our approach using the example of non-resonant x-ray emission from a water molecule, considering the lowest core-ionized K-1 and first core-ionized shake-up K-1V-1V1 intermediate states. These channels exemplify the developed theory on bound-bound, bound-continuum, continuum-bound, and continuum-continuum transitions. Our results suggest that the time-dependent approach is efficient for simulating XES involving dissociative states, whereas the time-independent approach, based on Franck-Condon factors, is more efficient for bound-bound transitions expressed as discrete frequency dependence in the energy domain. The methods and discussion have general applicability, including both NAS and more complex systems, such as liquid water.

5.
J Synchrotron Radiat ; 30(Pt 2): 284-300, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891842

RESUMO

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot by shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, an imaging detector capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst is employed, and allows a photon-shot-noise-limited sensitivity to be approached. The setup and its capabilities are reviewed as well as the online and offline analysis tools provided to users.

6.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557966

RESUMO

Electron spectroscopy with the unprecedented transmission of angle-resolved time-of-flight detection, in combination with pulsed X-ray sources, brings new impetus to functional materials science. We showcase recent developments towards chemical sensitivity from electron spectroscopy for chemical analysis and structural information from photoelectron diffraction using the phase transition properties of 1T-TaS2. Our development platform is the SurfaceDynamics instrument located at the Femtoslicing facility at BESSY II, where femtosecond and picosecond X-ray pulses can be generated and extracted. The scientific potential is put into perspective to the current rapidly developing pulsed X-ray source capabilities from Lasers and Free-Electron Lasers.

7.
Phys Chem Chem Phys ; 24(45): 27819-27826, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350272

RESUMO

In this work, we investigate the photo-aquation reaction of the ferrocyanide anion with multi-edge picosecond soft X-ray spectroscopy. Combining the information of the iron L-edge with nitrogen and oxygen K-edges, we carry out a complete characterization of the bonding channels in the [Fe(CN)5(H2O)]3- photo-product. We observe clear spectral signatures of covalent bonding between water and the metal, reflecting the mixing of the Fe dz2 orbital with the 3a1 and 4a1 orbitals of H2O. Additional fingerprints related to the symmetry reduction and the resulting loss in orbital degeneracy are also reported. The implications of the elucidated fingerprints in the context of future ultra-fast experiments are also discussed.

8.
Phys Chem Chem Phys ; 24(32): 19218-19222, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920216

RESUMO

Auger-photoelectron coincidence spectroscopy (APECS) has been used to examine the electron correlation and itinerance effects in transition metals Cu, Ni and Co. It is shown that the LVV Auger, in coincidence with 2p photoelectrons, spectra can be represented using atomic multiplet positions if the 3d-shell is localized (atomic-like) and with a self-convoluted valence band for band-like (itinerant) materials as explained using the Cini-Sawatzky model. For transition metals, the 3d band changes from band-like to localized with increasing atomic number, with the possibility of a mixed behavior. Our result shows that the LVV spectra of Cu can be represented by atomic multiplet calculations, those of Co resemble the self-convolution of the valence band and those of Ni are a mixture of both, consistent with the Cini-Sawatzky model.

9.
Proc Natl Acad Sci U S A ; 119(28): e2118101119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787045

RESUMO

The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 Å, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen 1s to [Formula: see text] resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1s to [Formula: see text] resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering.


Assuntos
Hidrogênio , Água , Técnicas de Química Analítica , Oxigênio/química , Água/química , Raios X
10.
Chem Commun (Camb) ; 58(63): 8834-8837, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35848855

RESUMO

The inherent stability of methylated formamides is traced to a stabilization of the deep-lying σ-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides.


Assuntos
Formamidas , Nitrogênio , Espalhamento de Radiação , Raios X
11.
Phys Chem Chem Phys ; 24(30): 17979-17985, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35737440

RESUMO

Cr(CO)6 was investigated by X-ray absorption spectroscopy. The spectral signature at the metal edge provides information about the back-bonding of the metal in this class of complexes. Among the processes it participates in is ligand substitution in which a carbonyl ligand is ejected through excitation to a metal to ligand charge transfer (MLCT) band. The unsaturated carbonyl Cr(CO)5 is stabilized by solution media in square pyramidal geometry and further reacts with the solvent. Multi-site-specific probing after photoexcitation was used to investigate the ligand substitution photoreaction process which is a common first step in catalytic processes involving metal carbonyls. The data were analysed with the aid of TD-DFT computations for different models of photoproducts and signatures for ligand rearrangement after substitution were found. The rearrangement was found to occur in about 790 ps in agreement with former studies of the photoreaction.

12.
Inorg Chem ; 61(27): 10321-10328, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764301

RESUMO

Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.


Assuntos
Complexos de Coordenação , Elementos de Transição , Ácido Edético , Compostos Férricos/química , Ligantes , Metais
13.
J Synchrotron Radiat ; 29(Pt 3): 908-915, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511024

RESUMO

Resonant inelastic X-ray scattering in the XUV-regime has been implemented at BESSY II, pushing for a few-meV bandwidth in inelastic X-ray scattering at transition metal M-edges, rare earth N-edges and the K-edges of light elements up to carbon with full polarization control. The new dedicated low-energy beamline UE112-PGM1 has been designed to provide 1 µm vertical and 20 µm horizontal beam dimensions that serve together with sub-micrometre solid-state sample positioning as the source point for a high-resolution plane grating spectrometer and a high-transmission Rowland spectrometer for rapid overview spectra. The design and commissioning results of the beamline and high-resolution spectrometer are presented. Helium autoionization spectra demonstrate a resolving power of the beamline better than 10 000 at 64 eV with a 300 lines mm-1 grating while the measured resolving power of the spectrometer in the relevant energy range is 3000 to 6000.

14.
Phys Chem Chem Phys ; 24(11): 6627-6638, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234760

RESUMO

Modern stationary X-ray spectroscopy is unable to resolve rotational structure. In the present paper, we propose to use time-resolved two color X-ray pump-probe spectroscopy with picosecond resolution for real-time monitoring of the rotational dynamics induced by the recoil effect. The proposed technique consists of two steps. The first short pump X-ray pulse ionizes the valence electron, which transfers angular momentum to the molecule. The second time-delayed short probe X-ray pulse resonantly excites a 1s electron to the created valence hole. Due to the recoil-induced angular momentum the molecule rotates and changes the orientation of transition dipole moment of core-excitation with respect to the transition dipole moment of the valence ionization, which results in a temporal modulation of the probe X-ray absorption as a function of the delay time between the pulses. We developed an accurate theory of the X-ray pump-probe spectroscopy of the recoil-induced rotation and study how the energy of the photoelectron and thermal dephasing affect the structure of the time-dependent X-ray absorption using the CO molecule as a case-study. We also discuss the feasibility of experimental observation of our theoretical findings, opening new perspectives in studies of molecular rotational dynamics.

15.
J Phys Chem Lett ; 13(10): 2459-2466, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35266716

RESUMO

Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the π and σ manifolds at the proton-transfer site.


Assuntos
Prótons , Ligação de Hidrogênio , Isomerismo , Análise Espectral , Raios X
16.
Nanoscale ; 14(17): 6331-6338, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297938

RESUMO

We demonstrate that tungsten disulphide (WS2) with thicknesses ranging from monolayer (ML) to several monolayers can be grown on SiO2/Si, Si, and Al2O3 by pulsed direct current-sputtering. The presence of high quality monolayer and multilayered WS2 on the substrates is confirmed by Raman spectroscopy since the peak separations between the A1g-E2g and A1g-2LA vibration modes exhibit a gradual increase depending on the number of layers. X-ray diffraction confirms a textured (001) growth of WS2 films. The surface roughness measured with atomic force microscopy is between 1.5 and 3 Å for the ML films. The chemical composition WSx (x = 2.03 ± 0.05) was determined from X-ray Photoelectron Spectroscopy. Transmission electron microscopy was performed on a multilayer film to show the 2D layered structure. A unique method for growing 2D layers directly by sputtering opens up the way for designing 2D materials and batch production of high-uniformity and high-quality (stochiometric, large grain sizes, flatness) WS2 films, which will advance their practical applications in various fields.

17.
Phys Chem Chem Phys ; 24(12): 7505-7511, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35288726

RESUMO

Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Qx 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores.

18.
Phys Chem Chem Phys ; 23(43): 24765-24772, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714305

RESUMO

The central moiety of porphyrins is shown to control the charge state of the inner complex and links it by covalent interaction to the peripheral substituents. This link, which enables the versatile functions of porphyrins, is not picked up in the established, reduced four orbital picture [Gouterman, J. Mol. Spectrosc., 1961, 6, 138]. X-ray absorption spectroscopy at the N K-edge with density functional theory approaches gives access to the full electronic structure, in particular the π* manifold beyond the Gouterman orbitals. Systematic variation of the central moiety highlights two linked, governing trends: The ionicity of the porphyrin center increases from the aminic N-H to N-Cu to N-Zn to N-Mg to the iminic N:. At the same time covalency with peripheral substituents increases and compensates the buildup of high charge density at the coordinated nitrogen sites.

19.
J Phys Chem Lett ; 12(35): 8637-8643, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34472857

RESUMO

Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C2v point group, in an aqueous solution environment, using scattering though its 2a2 resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b2 and 11a1 orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.

20.
Sci Rep ; 11(1): 16596, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400717

RESUMO

The chemical shift of core level binding energies makes electron spectroscopy for chemical analysis (ESCA) a workhorse analytical tool for science and industry. For some elements, close lying and overlapping spectral features within the natural life time broadening restrict applications. We establish how the core level binding energy chemical shift can be picked up experimentally by the additional selectivity through Auger electron photoelectron coincidence spectroscopy (APECS). Coincident measurement of Ni 3p photoemission with different MVV Auger regions from specific decay channels, narrows the 3p core-levels to a width of 1.2 eV, resolves the spin-orbit splitting of 1.6 eV and determines the chemical shift of Ni 3p levels of a Ni(111) single crystal and its oxidized surface layer to 0.6 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...