Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361681

RESUMO

Aripiprazole is an atypical antipsychotic drug, which is prescribed for many psychiatric diseases such as schizophrenia and mania in bipolar disorder. It primarily acts as an agonist of dopaminergic and other G-protein coupled receptors. So far, an interaction with ligand- or voltage-gated ion channels has been classified as weak. Meanwhile, we identified aripiprazole in a preliminary test as a potent blocker of voltage-gated sodium channels. Here, we present a detailed analysis about the interaction of aripiprazole with the dominant voltage-gated sodium channel of heart muscle (hNav1.5). Electrophysiological experiments were performed by means of the patch clamp technique at human heart muscle sodium channels (hNav1.5), heterologously expressed in human TsA cells. Aripiprazole inhibits the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state is weak with an extrapolated Kr of about 55 µM. By contrast, the interaction with the inactivated state is strong. The affinities for the fast and slow inactivated state are in the low micromolar range (0.5-1 µM). Kinetic studies indicate that block development for the inactivated state must be described with a fast (ms) and a slow (s) time constant. Even though the time constants differ by a factor of about 50, the resulting affinity constants were nearly identical (in the range of 0.5 µM). Besides this, aripirazole also interacts with the open state of the channel. Using an inactivation deficit mutant, an affinity of about 1 µM was estimated. In summary, aripiprazole inhibits voltage-gated sodium channels at low micromolar concentrations. This property might add to its possible anticancer and neuroprotective properties.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Aripiprazol/farmacologia , Cinética , Técnicas de Patch-Clamp , Miocárdio , Bloqueadores dos Canais de Sódio/farmacologia
2.
Cells ; 11(20)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291163

RESUMO

The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.


Assuntos
Anafilatoxinas , Neutrófilos , Complemento C5a des-Arginina , Espécies Reativas de Oxigênio , Anafilatoxinas/análise , Anafilatoxinas/farmacologia , Proteínas do Sistema Complemento , Glucose
3.
Front Pharmacol ; 12: 737637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744721

RESUMO

Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 µM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.

4.
Biomedicines ; 9(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34829733

RESUMO

Neutrophils provide rapid and efficient defense mechanisms against invading pathogens. Upon stimulation with proinflammatory mediators, including complement factors and bacterial peptides, neutrophils respond with changes in their membrane potential, intracellular pH, and cellular size. This study provides an approach to quantify these important changes simultaneously using multiparametric flow cytometry, thereby revealing a typical sequence of neutrophil activation consisting of depolarization, alkalization, and increase in cellular size. Additionally, the time resolution of the flow cytometric measurement is improved in order to allow changes that occur within seconds to be monitored, and thus to enhance the kinetic analysis of the neutrophil response. The method is appropriate for the reliable semiquantitative detection of small variations with respect to an increase, no change, and decrease in those parameters as demonstrated by the screening of various proinflammatory mediators. As a translational outlook, the findings are put into context in inflammatory conditions in vitro as well as in a clinically relevant whole blood model of endotoxemia. Taken together, the multiparametric analysis of neutrophil responsiveness regarding depolarization, alkalization, and changes in cellular size may contribute to a better understanding of neutrophils in health and disease, thus potentially yielding innovative mechanistic insights and possible novel diagnostic and/or prognostic approaches.

5.
Front Immunol ; 12: 642867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796110

RESUMO

Platelet-activating factor (PAF) is an important mediator of the systemic inflammatory response. In the case of sepsis, proper activation and function of neutrophils as the first line of cellular defense are based on a well-balanced physiological response. However, little is known about the role of PAF in cellular changes of neutrophils during sepsis. Therefore, this study investigates the reaction patterns of neutrophils induced by PAF with a focus on membrane potential (MP), intracellular pH, and cellular swelling under physiological and pathophysiological conditions and hypothesizes that the PAF-mediated response of granulocytes is altered during sepsis. The cellular response of granulocytes including MP, intracellular pH, cellular swelling, and other activation markers were analyzed by multiparametric flow cytometry. In addition, the chemotactic activity and the formation of platelet-neutrophil complexes after exposure to PAF were investigated. The changes of the (electro-)physiological response features were translationally verified in a human ex vivo whole blood model of endotoxemia as well as during polymicrobial porcine sepsis. In neutrophils from healthy human donors, PAF elicited a rapid depolarization, an intracellular alkalization, and an increase in cell size in a time- and dose-dependent manner. Mechanistically, the alkalization was dependent on sodium-proton exchanger 1 (NHE1) activity, while the change in cellular shape was sodium flux- but only partially NHE1-dependent. In a pathophysiological altered environment, the PAF-induced response of neutrophils was modulated. Acidifying the extracellular pH in vitro enhanced PAF-mediated depolarization, whereas the increases in cell size and intracellular pH were largely unaffected. Ex vivo exposure of human whole blood to lipopolysaccharide diminished the PAF-induced intracellular alkalization and the change in neutrophil size. During experimental porcine sepsis, depolarization of the MP was significantly impaired. Additionally, there was a trend for increased cellular swelling, whereas intracellular alkalization remained stable. Overall, an impaired (electro-)physiological response of neutrophils to PAF stimulation represents a cellular hallmark of those cells challenged during systemic inflammation. Furthermore, this altered response may be indicative of and causative for the development of neutrophil dysfunction during sepsis.


Assuntos
Ativação de Neutrófilo/efeitos dos fármacos , Fator de Ativação de Plaquetas/farmacologia , Sepse/imunologia , Animais , Endotoxemia/imunologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Inflamação/imunologia , Masculino , Potenciais da Membrana , NADPH Oxidase 2/fisiologia , Ativação de Neutrófilo/fisiologia , Suínos
6.
J Innate Immun ; 13(4): 225-241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857948

RESUMO

A sufficient response of neutrophil granulocytes stimulated by interleukin (IL)-8 is vital during systemic inflammation, for example, in sepsis or severe trauma. Moreover, IL-8 is clinically used as biomarker of inflammatory processes. However, the effects of IL-8 on cellular key regulators of neutrophil properties such as the intracellular pH (pHi) in dependence of ion transport proteins and during inflammation remain to be elucidated. Therefore, we investigated in detail the fundamental changes in pHi, cellular shape, and chemotactic activity elicited by IL-8. Using flow cytometric methods, we determined that the IL-8-induced cellular activity was largely dependent on specific ion channels and transporters, such as the sodium-proton exchanger 1 (NHE1) and non-NHE1-dependent sodium flux. Exposing neutrophils in vitro to a proinflammatory micromilieu with N-formyl-Met-Leu-Phe, LPS, or IL-8 resulted in a diminished response regarding the increase in cellular size and pH. The detailed kinetics of the reduced reactivity of the neutrophil granulocytes could be illustrated in a near-real-time flow cytometric measurement. Last, the LPS-mediated impairment of the IL-8-induced response in neutrophils was confirmed in a translational, animal-free human whole blood model. Overall, we provide novel mechanistic insights for the interaction of IL-8 with neutrophil granulocytes and report in detail about its alteration during systemic inflammation.


Assuntos
Neutrófilos , Sepse , Granulócitos , Humanos , Inflamação , Interleucina-8
7.
Front Pharmacol ; 12: 622489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732157

RESUMO

Atomoxetine, a neuroactive drug, is approved for the treatment of attention-deficit/hyperactivity disorder (ADHD). It is primarily known as a high affinity blocker of the noradrenaline transporter, whereby its application leads to an increased level of the corresponding neurotransmitter in different brain regions. However, the concentrations used to obtain clinical effects are much higher than those which are required to block the transporter system. Thus, off-target effects are likely to occur. In this way, we previously identified atomoxetine as blocker of NMDA receptors. As many psychotropic drugs give rise to sudden death of cardiac origin, we now tested the hypothesis whether atomoxetine also interacts with voltage-gated sodium channels of heart muscle type in clinically relevant concentrations. Electrophysiological experiments were performed by means of the patch-clamp technique at human heart muscle sodium channels (hNav1.5) heterogeneously expressed in human embryonic kidney cells. Atomoxetine inhibited sodium channels in a state- and use-dependent manner. Atomoxetine had only a weak affinity for the resting state of the hNav1.5 (Kr: ∼ 120 µM). The efficacy of atomoxetine strongly increased with membrane depolarization, indicating that the inactivated state is an important target. A hallmark of this drug was its slow interaction. By use of different experimental settings, we concluded that the interaction occurs with the slow inactivated state as well as by slow kinetics with the fast-inactivated state. Half-maximal effective concentrations (2-3 µM) were well within the concentration range found in plasma of treated patients. Atomoxetine also interacted with the open channel. However, the interaction was not fast enough to accelerate the time constant of fast inactivation. Nevertheless, when using the inactivation-deficient hNav1.5_I408W_L409C_A410W mutant, we found that the persistent late current was blocked half maximal at about 3 µM atomoxetine. The interaction most probably occurred via the local anesthetic binding site. Atomoxetine inhibited sodium channels at a similar concentration as it is used for the treatment of ADHD. Due to its slow interaction and by inhibiting the late current, it potentially exerts antiarrhythmic properties.

8.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522805

RESUMO

Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.


Assuntos
Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Proteínas dos Microfilamentos , Músculo Esquelético , Mutação/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular
9.
J Physiol ; 596(20): 4893-4907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144063

RESUMO

KEY POINTS: Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.


Assuntos
Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Prótons , Receptores Purinérgicos P2X4/química , Transdução de Sinais
10.
Mediators Inflamm ; 2018: 2052356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002598

RESUMO

BACKGROUND: Polymorphonuclear granulocytes (PMN) play a crucial role in host defense. Physiologically, exposure of PMN to the complement activation product C5a results in a protective response against pathogens, whereas in the case of systemic inflammation, excessive C5a substantially impairs neutrophil functions. To further elucidate the inability of PMN to properly respond to C5a, this study investigates the role of the cellular membrane potential of PMN in response to C5a. METHODS: Electrophysiological changes in cellular and mitochondrial membrane potential and intracellular pH of PMN from human healthy volunteers were determined by flow cytometry after exposure to C5a. Furthermore, PMN from male Bretoncelles-Meishan-Willebrand cross-bred pigs before and three hours after severe hemorrhagic shock were analyzed for their electrophysiological response. RESULTS: PMN showed a significant dose- and time-dependent depolarization in response to C5a with a strong response after one minute. The chemotactic peptide fMLP also evoked a significant shift in the membrane potential of PMN. Acidification of the cellular microenvironment significantly enhanced depolarization of PMN. In a clinically relevant model of porcine hemorrhagic shock, the C5a-induced changes in membrane potential of PMN were markedly diminished compared to healthy littermates. Overall, these membrane potential changes may contribute to PMN dysfunction in an inflammatory environment.


Assuntos
Complemento C5a/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Choque Hemorrágico/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Eletrofisiologia , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Suínos
11.
Sci Rep ; 8(1): 5527, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615749

RESUMO

Due to the highly invasive nature of Glioblastoma (GB), complete surgical resection is not feasible, while motile tumour cells are often associated with several specific brain structures that enhance treatment-resistance. Here, we investigate the therapeutic potential of Disulfiram and Carbenoxolone, that inhibit two distinct interactions between GB and the brain tissue microenvironment: stress-induced cell-matrix adhesion and gap junction mediated cell-cell communication, respectively. Increase in cell numbers of tumour-initiating cells, which are cultured in suspension as cell clusters, and adherent differentiated cells can be blocked to a similar extent by Carbenoxolone, as both cell populations form gap junctions, but the adherent differentiated cells are much more sensitive to Disulfiram treatment, which - via modulation of NF-κB signalling - interferes with cell-substrate adhesion. Interestingly, inducing adhesion in tumour-initiating cells without differentiating them does not sensitize for Disulfiram. Importantly, combining Disulfiram, Carbenoxolone and the standard chemotherapeutic drug Temozolomide reduces tumour size in an orthotopic mouse model. Isolating GB cells from their direct environment within the brain represents an important addition to current therapeutic approaches. The blockage of cellular interactions via the clinically relevant substances Disulfiram and Carbenoxolone, has distinct effects on different cell populations within a tumour, potentially reducing motility and/or resistance to apoptosis.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Carbenoxolona/farmacologia , Dissulfiram/farmacologia , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Inibidores de Acetaldeído Desidrogenases/farmacologia , Animais , Antiulcerosos/farmacologia , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Adesão Celular , Proliferação de Células , Quimioterapia Combinada , Perfilação da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Exp Neurol ; 304: 1-13, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29466703

RESUMO

One major pathophysiological hallmark of Alzheimer's disease (AD) is senile plaques composed of amyloid ß (Aß). In the amyloidogenic pathway, cleavage of the amyloid precursor protein (APP) is shifted towards Aß production and soluble APPß (sAPPß) levels. Aß is known to impair synaptic function; however, much less is known about the physiological functions of sAPPß. The neurotrophic properties of sAPPα, derived from the non-amyloidogenic pathway of APP cleavage, are well-established, whereas only a few, conflicting studies on sAPPß exist. The intracellular pathways of sAPPß are largely unknown. Since sAPPß is generated alongside Aß by ß-secretase (BACE1) cleavage, we tested the hypothesis that sAPPß effects differ from sAPPα effects as a neurotrophic factor. We therefore performed a head-to-head comparison of both mammalian recombinant peptides in developing primary hippocampal neurons (PHN). We found that sAPPα significantly increases axon length (p = 0.0002) and that both sAPPα and sAPPß increase neurite number (p < 0.0001) of PHN at 7 days in culture (DIV7) but not at DIV4. Moreover, both sAPPα- and sAPPß-treated neurons showed a higher neuritic complexity in Sholl analysis. The number of glutamatergic synapses (p < 0.0001), as well as layer thickness of postsynaptic densities (PSDs), were significantly increased, and GABAergic synapses decreased upon sAPP overexpression in PHN. Furthermore, we showed that sAPPα enhances ERK and CREB1 phosphorylation upon glutamate stimulation at DIV7, but not DIV4 or DIV14. These neurotrophic effects are further associated with increased glutamate sensitivity and CREB1-signaling. Finally, we found that sAPPα levels are significantly reduced in brain homogenates of AD patients compared to control subjects. Taken together, our data indicate critical stage-dependent roles of sAPPs in the developing glutamatergic system in vitro, which might help to understand deleterious consequences of altered APP shedding in AD patients, beyond Aß pathophysiology.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Hipocampo/patologia , Homeostase/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Transdução de Sinais/fisiologia
13.
Nat Commun ; 8(1): 475, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883413

RESUMO

Skeletal muscle excitation-contraction (EC) coupling is initiated by sarcolemmal depolarization, which is translated into a conformational change of the dihydropyridine receptor (DHPR), which in turn activates sarcoplasmic reticulum (SR) Ca2+ release to trigger muscle contraction. During EC coupling, the mammalian DHPR embraces functional duality, as voltage sensor and L-type Ca2+ channel. Although its unique role as voltage sensor for conformational EC coupling is firmly established, the conventional function as Ca2+ channel is still enigmatic. Here we show that Ca2+ influx via DHPR is not necessary for muscle performance by generating a knock-in mouse where DHPR-mediated Ca2+ influx is eliminated. Homozygous knock-in mice display SR Ca2+ release, locomotor activity, motor coordination, muscle strength and susceptibility to fatigue comparable to wild-type controls, without any compensatory regulation of multiple key proteins of the EC coupling machinery and Ca2+ homeostasis. These findings support the hypothesis that the DHPR-mediated Ca2+ influx in mammalian skeletal muscle is an evolutionary remnant.In mammalian skeletal muscle, the DHPR functions as a voltage sensor to trigger muscle contraction and as a Ca2+ channel. Here the authors show that mice where Ca2+ influx through the DHPR is eliminated display no difference in skeletal muscle function, suggesting that the Ca2+ influx through this channel is vestigial.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Músculo Esquelético/fisiologia , Animais , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Retículo Sarcoplasmático/metabolismo
14.
Invest New Drugs ; 35(3): 277-289, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28164251

RESUMO

Background and Purpose IC261 (3-[(2,4,6-trimethoxyphenyl)methylidenyl]-indolin-2-one) has previously been introduced as an isoform specific inhibitor of casein kinase 1 (CK1) causing cell cycle arrest or cell death of established tumor cell lines. However, it is reasonable to assume that not all antitumor activities of IC261 are mediated by the inhibition of CK1. Meanwhile there is growing evidence that functional voltage-gated sodium channels are also implicated in the progression of tumors as their blockage suppresses tumor migration and invasion of different tumor cell lines. Thus, we asked whether IC261 functionally inhibits voltage-gated sodium channels. Experimental Approach Electrophysiological experiments were performed using the patch-clamp technique at human heart muscle sodium channels heterologously expressed in human TsA cells. Key Results IC261 inhibits sodium channels in a state-dependent manner. IC261 does not interact with the open channel and has only a low affinity for the resting state of the hNav1.5 (human voltage-gated sodium channel; Kr: 120 µM). The efficacy of IC261 strongly increases with membrane depolarisation, indicating that the inactivated state is an important target. The results of different experimental approaches finally revealed an affinity of IC261 to the inactivated state between 1 and 2 µM. Conclusion and Implications IC261 inhibits sodium channels at a similar concentration necessary to reduce CK1δ/ε activity by 50% (IC50 value 1 µM). Thus, inhibition of sodium channels might contribute to the antitumor activity of IC261.


Assuntos
Caseína Quinase I/antagonistas & inibidores , Indóis/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Floroglucinol/análogos & derivados , Bloqueadores dos Canais de Sódio/farmacologia , Linhagem Celular , Humanos , Floroglucinol/farmacologia
15.
Neural Plast ; 2016: 3760702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27247802

RESUMO

Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function, given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus, to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons, using a protocol for motor neuron differentiation, we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes, cell survival, cell fate, and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival, altered neuronal differentiation, and, in particular, synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.


Assuntos
Homeostase/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Zinco/metabolismo , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia
16.
Mol Brain ; 9: 28, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26969129

RESUMO

BACKGROUND: The majority of neurons within the central nervous system receive their excitatory inputs via small, actin-rich protrusions called dendritic spines. Spines can undergo rapid morphological alterations according to synaptic activity. This mechanism is implicated in learning and memory formation as it is ultimately altering the number and distribution of receptors and proteins at the post-synaptic membrane, thereby regulating synaptic input. The Rho-family GTPases play an important role in regulating this spine plasticity by the interaction with cytoskeletal components and several signaling pathways within the spine compartment. Rho-GAP interacting CIP4 homologue2/RICH2 is a Rho-GAP protein regulating small GTPases and was identified as an interaction partner of the scaffolding protein SHANK3 at post-synaptic densities. RESULTS: Here, we characterize the loss of RICH2 in a novel mouse model. Our results show that RICH2 KO animals display a selective and highly significant fear of novel objects and increased stereotypic behavior as well as impairment of motor learning. We found an increase in multiple spine synapses in the hippocampus and cerebellum along with alterations in receptor composition and actin polymerization. Furthermore, we observed that the loss of RICH2 leads to a disinhibition of synaptic RAC1 in vivo. CONCLUSIONS: The results are in line with the reported role of RAC1 activity being essential for activity-dependent spine enlargement. Since SHANK3 mutations are known to be causative for neuropsychiatric diseases of the Autism Spectrum (ASD), a disintegrated SHANK3/RICH2 complex at synaptic sites might at least in part be responsible for abnormal spine formation and plasticity in ASDs.


Assuntos
Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Proteínas Ativadoras de GTPase/deficiência , Transtornos Fóbicos/metabolismo , Animais , Comportamento Animal , Glutamatos/metabolismo , Camundongos Mutantes , Atividade Motora , Transtornos Fóbicos/fisiopatologia , Transdução de Sinais , Sinapses/metabolismo
17.
Neuropharmacology ; 99: 459-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26284492

RESUMO

BACKGROUND AND PURPOSE: Diphenhydramine is a well known H1-receptor antagonist that plays a major role in clinical practice. Nowadays, diphenhydramine is primarily applied to prevent nausea but also its sedative and analgesic effects are of clinical importance. As other drugs mediating sedative and analgesic properties partly operate via the inhibition of glutamate receptors, we tested the hypothesis that diphenhydramine, as well interacts with excitatory ionotropic glutamate receptors. EXPERIMENTAL APPROACH: Electrophysiological patch-clamp experiments were performed on glutamate receptors which were heterologously expressed in human TsA cells. KEY RESULTS: Diphenhydramine inhibits NMDA-mediated membrane currents in a reversible and concentration-dependent manner at clinically relevant concentrations. The inhibition occurred in a noncompetitive manner. Diphenhydramine did not compete with NMDA or glycine for their binding sites and half-maximal inhibition was obtained around 25 µM diphenhydramine, independent of the subunit composition. The inhibition was caused by a classical open channel blocking mechanism and varied strongly with the membrane potential. Our results suggest that diphenhydramine most probably interacts with the Mg2+ binding site or a very closely related area of the channel pore. CONCLUSION AND IMPLICATIONS: The data presented here provide evidence that the NMDA receptor antagonism of diphenhydramine contribute to its sedative and potentially LTP-related effects like analgesia and amnesia.


Assuntos
Difenidramina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sítios de Ligação , Cátions Bivalentes/metabolismo , Difenidramina/química , Avaliação Pré-Clínica de Medicamentos , Antagonistas de Aminoácidos Excitatórios/química , Células HEK293 , Humanos , Magnésio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo
18.
J Med Chem ; 58(16): 6710-5, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26278660

RESUMO

Neurodegenerative diseases represent a challenge for biomedical research due to their high prevalence and lack of mechanism-based treatments. Because of the complex pathology of neurodegenerative disorders, multifunctional drugs have been increasingly recognized as potential treatments. We identified homobivalent γ-carbolinium salts as potent inihitors of both cholinesterases, N-methyl-D-aspartate receptors, and monoamine oxidases. Homobivalent γ-carbolines displayed similar structure-activity relationships on all tested targets and may present promising designed multiple ligands for the treatment of neurodegenerative disorders.


Assuntos
Carbolinas/síntese química , Carbolinas/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Biologia Computacional , Antagonistas de Aminoácidos Excitatórios/síntese química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Indicadores e Reagentes , Ligantes , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Relação Estrutura-Atividade
19.
Drug Des Devel Ther ; 7: 1433-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348020

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder. The norepinephrine transporter (NET) inhibitor atomoxetine, the first nonstimulant drug licensed for ADHD treatment, also acts as an N-methyl-D-aspartate receptor (NMDAR) antagonist. The compound's effects on gene expression and protein levels of NET and NMDAR subunits (1, 2A, and 2B) are unknown. Therefore, adolescent Sprague Dawley rats were treated with atomoxetine (3 mg/kg, intraperitoneal injection [i.p.]) or saline (0.9%, i.p.) for 21 consecutive days on postnatal days (PND) 21-41. In humans, atomoxetine's earliest clinical therapeutic effects emerge after 2-3 weeks. Material from prefrontal cortex, striatum (STR), mesencephalon (MES), and hippocampus (HC) was analyzed either directly after treatment (PND 42) or 2 months after termination of treatment (PND 101) to assess the compound's long-term effects. In rat brains analyzed immediately after treatment, protein analysis exhibited decreased levels of the NET in HC, and NMDAR subunit 2B in both STR and HC; the transcript levels were unaltered. In rat brains probed 2 months after final atomoxetine exposure, messenger RNA analysis also revealed significantly reduced levels of genes coding for NMDAR subunits in MES and STR. NMDAR protein levels were reduced in STR and HC. Furthermore, the levels of two SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, synaptophysin and synaptosomal-associated protein 25, were also significantly altered in both treatment groups. This in vivo study detected atomoxetine's effects beyond NET inhibition. Taken together, these data reveal that atomoxetine seems to decrease glutamatergic transmission in a brain region-specific manner. Long-term data show that the compound's impact is not due to an acute pharmacological effect but lasts or even amplifies after a drug-free period of 2 months, leading to altered development of synaptic composition. These alterations might contribute to atomoxetine's clinical effects in the treatment of ADHD, a neurodevelopmental disorder in which synaptic processes and especially a dysregulated glutamatergic metabolism seem to be involved.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Propilaminas/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Inibidores da Captação Adrenérgica/administração & dosagem , Animais , Cloridrato de Atomoxetina , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Injeções Intraperitoneais , Masculino , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Propilaminas/administração & dosagem , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Especificidade da Espécie , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...