Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthrosc Tech ; 7(10): e1045-e1056, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30377585

RESUMO

Many surgeons use quadriceps tendon (QT) graft for anterior cruciate ligament (ACL) revision surgery; however, despite excellent clinical results, the QT has not achieved universal acceptance for primary ACL reconstruction. One of the reasons for this may be that the QT is technically demanding to harvest and the scar from open harvesting techniques is less cosmetically favorable than that from hamstring tendon techniques. Recent evidence has suggested that broad flat QT grafts may more closely mimic native ACL "ribbon-like" morphology than hamstring tendon grafts. Furthermore, rectangular bone tunnels may more accurately re-create native ACL attachments, allowing grafts to simulate native ACL rotation during knee flexion and potentially improving biomechanics. Rectangular tunnels have further advantages in revision cases, in which-in comparison with round tunnels-they have reduced overlap with pre-existing transtibial tunnels, increasing the chance of bypassing primary tunnels during revision surgery. Finally, instrumentation for minimally invasive QT harvesting has reduced technical difficulty and improved cosmetic results. Hence, technical and cosmetic concerns are no longer barriers to QT use. These anatomic and biomechanical advantages and technical developments make the QT an increasingly attractive option for both primary and revision ACL reconstruction.

2.
Small ; 14(13): e1703701, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29450969

RESUMO

The electronic properties of graphene can be efficiently altered upon interaction with the underlying substrate resulting in a dramatic change of charge carrier behavior. Here, the evolution of the local electronic properties of epitaxial graphene on a metal upon the controlled formation of multilayers, which are produced by intercalation of atomic carbon in graphene/Ir(111), is investigated. Using scanning tunneling microscopy and Landau-level spectroscopy, it is shown that for a monolayer and bilayers with small-angle rotations, Landau levels are fully suppressed, indicating that the metal-graphene interaction is largely confined to the first graphene layer. Bilayers with large twist angles as well as twisted trilayers demonstrate a sequence of pronounced Landau levels characteristic for a free-standing graphene monolayer pointing toward an effective decoupling of the top layer from the metal substrate. These findings give evidence for the controlled preparation of epitaxial graphene multilayers with a different degree of decoupling, which represent an ideal platform for future electronic and spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...