Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(26): 17609-17618, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37365971

RESUMO

Silicon oxide compounds are considered as precursors for silicon-based interstellar dust grains which consist mainly of silica and silicates. Knowledge of their geometric, electronic, optical, and photochemical properties provides crucial input for astrochemical models describing the evolution of dust grains. Herein, we report the optical spectrum of mass-selected Si3O2+ cations recorded in the 234-709 nm range by means of electronic photodissociation (EPD) in a quadrupole/time-of-flight tandem mass spectrometer coupled to a laser vaporization source. The EPD spectrum is observed predominantly in the lowest-energy fragmentation channel corresponding to Si2O+ (loss of SiO), while the higher-energy Si+ channel (loss of Si2O2) provides only a minor contribution. The EPD spectrum exhibits two weaker unresolved bands A and B near 26 490 and 34 250 cm-1 (377.5 and 292 nm) and a strong transition C with a band origin at 36 914 cm-1 (270.9 nm) which shows vibrational fine structure. Analysis of the EPD spectrum is guided by complementary time-dependent density functional theory (TD-DFT) calculations at the UCAM-B3LYP/cc-pVTZ and UB3LYP/cc-pVTZ levels to determine structures, energies, electronic spectra, and fragmentation energies of the lowest-energy isomers. The cyclic global minimum structure with C2v symmetry determined previously by infrared spectroscopy can explain the EPD spectrum well, with assignments of bands A-C to transitions from the 2A1 ground electronic state (D0) into the 4th, 9th, and 11th excited doublet states (D4,9,11), respectively. The vibronic fine structure of band C is analyzed by Franck-Condon simulations, which confirm the isomer assignment. Significantly, the presented EPD spectrum of Si3O2+ corresponds to the first optical spectrum of any polyatomic SinOm+ cation.

2.
J Phys Chem Lett ; 13(33): 7624-7628, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35951547

RESUMO

The optical spectrum of Si2+ is presented. The two electronic band systems observed near 430 and 270 nm correspond to the two lowest optically allowed transitions of Si2+ assigned to 4Σu-(I) ← X4Σg- and 4Σu-(II) ← X4Σg-. The spectra were measured via photodissociation spectroscopy of mass-selected ions at the level of vibrational resolution, and the determined spectroscopic constants provide detailed information about the geometric and electronic structure, establishing molecular constants of this fundamental diatomic cation that enable astrophysical detection on, for example, hot rocky super-Earth-like exoplanets.

3.
Chemistry ; 27(61): 15074-15079, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34423877

RESUMO

Au2 + is a simple but crucial model system for understanding the diverse catalytic activity of gold. While the Au2 + ground state (X2 Σg + ) is understood reasonably well from mass spectrometry and computations, no spectroscopic information is available for its first excited state (A2 Σu + ). Herein, we present the vibrationally resolved electronic spectrum of this state for cold Ar-tagged Au2 + cations. This exceptionally low-lying and well isolated A2 Σ(u) + ←X2 Σ(g) + transition occurs in the near-infrared range. The observed band origin (5738 cm-1 , 1742.9 nm, 0.711 eV) and harmonic Au-Au and Au-Ar stretch frequencies (201 and 133 cm-1 ) agree surprisingly well with those predicted by standard time-dependent density functional theory calculations. The linearly bonded Ar tag has little impact on either the geometric or electronic structure of Au2 + , because the Au2 + ⋅⋅⋅Ar bond (∼0.4 eV) is much weaker than the Au-Au bond (∼2 eV). As a result of 6 s←5d excitation of an electron from the antibonding σu * orbital (HOMO-1) into the bonding σg orbital (SOMO), the Au-Au bond contracts substantially (by 0.1 Å).

4.
Phys Chem Chem Phys ; 23(1): 329-338, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346764

RESUMO

Understanding the catalytic decomposition of nitrous oxide on finely divided transition metals is an important environmental issue. In this study, we present the results of a combined infrared action spectroscopy and quantum chemical investigation of molecular N2O binding to isolated Aun+ (n ≤ 7) and Con+ (n ≤ 5) clusters. Infrared multiple-photon dissociation spectra have been recorded in the regions of both the N[double bond, length as m-dash]O (1000-1400 cm-1) and N[double bond, length as m-dash]N (2100-2450 cm-1) stretching modes of nitrous oxide. In the case of Aun+ clusters only the ground electronic state plays a role, while the involvement of energetically low-lying excited states in binding to the Con+ clusters cannot be ruled out. There is a clear preference for N-binding to clusters of both metals but some O-bound isomers are observed in the case of smaller Con(N2O)+ clusters.

5.
Phys Chem Chem Phys ; 22(48): 28123-28139, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290468

RESUMO

Hydration of biomolecules and pharmaceutical compounds has a strong impact on their structure, reactivity, and function. Herein, we explore the microhydration structure around the radical cation of the widespread pharmaceutical drug amantadine (C16H15NH2, Ama) by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+Wn = 1-3 clusters (W = H2O) recorded in the NH, CH, and OH stretch range of the cation ground electronic state. Analysis of the size-dependent frequency shifts by dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ) provides detailed information about the acidity of the protons of the NH2 group of Ama+ and the structure and strength of the NHO and OHO hydrogen bonds (H-bonds) of the hydration network. The preferred sequential cluster growth begins with hydration of the two acidic NH protons of the NH2 group (n = 1-2) and continues with an extension of the H-bonded hydration network by forming an OHO H-bond of the third W to one ligand in the first hydration subshell (n = 3), like in the W2 dimer. For n = 2, a minor population corresponds to Ama+W2 structures with a W2 unit attached to Ama+via a NHW2 H-bond. Although the N-H proton donor bonds are progressively destabilized by gradual microhydration, no proton transfer to the Wn solvent cluster is observed in the investigated size range (n ≤ 3). Besides the microhydration structure, we also obtain a first impression of the structure and IR spectrum of bare Ama+, as well as the effects of both ionization and hydration on the structure of the adamantyl cage. Comparison of Ama+ with aliphatic and aromatic primary amine radical cations reveals differences in the acidity of the NH2 group and the resulting interaction with W caused by substitution of the cycloalkyl cage.


Assuntos
Amantadina/química , Água/química , Teoria da Densidade Funcional , Modelos Químicos , Espectrofotometria Infravermelho
6.
Angew Chem Int Ed Engl ; 59(48): 21403-21408, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32888257

RESUMO

The electronic structure of the Au2 + cation is essential for understanding its catalytic activity. We present the optical spectrum of mass-selected Au2 + measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290-450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin-orbit coupling. The experimental spectra are compared to high-level quantum-chemical calculations at the CASSCF-MRCI level including spin-orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2 + -like diatomic molecular ion strictly requires multireference and relativistic treatment including spin-orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.

7.
Angew Chem Int Ed Engl ; 59(29): 12098-12104, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32392402

RESUMO

Diamondoid cations are reactive intermediates in their functionalization reactions in polar solution. Hydration is predicted to strongly activate their C-H bonds in initial proton abstraction reactions. To study the effects of microhydration on the properties of diamondoid cations, we characterize herein the prototypical monohydrated adamantane cation (C10 H16 + -H2 O, Ad+ -W) in its ground electronic state by infrared photodissociation spectroscopy in the CH and OH stretch ranges and dispersion-corrected density functional theory (DFT) calculations. The water (W) ligand binds to the acidic CH group of Jahn-Teller distorted Ad+ via a strong CH⋅⋅⋅O ionic H-bond supported by charge-dipole forces. Although W further enhances the acidity of this CH group along with a proton shift toward the solvent, the proton remains with Ad+ in the monohydrate. We infer essentially free internal W rotation from rotational fine structure of the ν3 band of W, resulting from weak angular anisotropy of the Ad+ -W potential.

8.
Angew Chem Int Ed Engl ; 58(11): 3356-3360, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30600582

RESUMO

Knowledge of the geometric and electronic structure of gold clusters and nanoparticles is vital for understanding their catalytic and photochemical properties at the molecular level. In this study, we report the vibronic optical photodissociation spectrum of cold and mass-selected Au4 + clusters measured at a resolution high enough to allow for comparison with Franck-Condon simulations of the excited state transitions based on time-dependent density functional theory calculations. The three vibrational frequencies identified for the lowest-lying optically accessible excited state at 2.17 eV stem from the Y-shaped isomer (C2v ) and not from the rhombic isomer (D2h ) considered to be the ground state structure of Au4 + . This study demonstrates that an analysis of low-resolution electronic spectra by calculations of vertical transitions alone is not sufficient for a reliable isomer assignment of such metal clusters.

9.
Nat Commun ; 9(1): 4988, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478319

RESUMO

Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron-electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40-50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12-52 fs for small water clusters.

10.
J Phys Chem A ; 122(9): 2329-2343, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29442510

RESUMO

(D3-)Methanol-nitrogen monoxide (CH3OH/CD3OH-NO) ices were exposed to ionizing radiation to facilitate the eventual determination of the CH3NO2 potential energy surface (PES) in the condensed phase. Reaction intermediates and products were monitored via infrared spectroscopy (FTIR) and photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) during the irradiation and temperature controlled desorption (TPD) phase, respectively. Distinct photoionization energies were utilized to discriminate the isomer(s) formed in these processes. The primary methanol radiolysis products were the methoxy (CH3O) and hydroxymethyl (CH2OH) radicals along with atomic hydrogen. The former was found to react barrierlessly with nitrogen monoxide resulting in the formation of cis- and trans-methyl nitrite (CH3ONO), which is the most abundant product that can be observed in the irradiated samples. On the other hand, the self-recombination of hydroxymethyl radicals yielding ethylene glycol (HO(CH2)2OH) and glycerol (HOCH2CH2(OH)CH2OH) is preferred over the recombination with nitrogen monoxide to nitrosomethanol (HOCH2NO).

11.
J Phys Chem A ; 121(40): 7477-7493, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28892389

RESUMO

We irradiated binary ice mixtures of ammonia (NH3) and oxygen (O2) ices at astrophysically relevant temperatures of 5.5 K with energetic electrons to mimic the energy transfer process that occurs in the track of galactic cosmic rays. By monitoring the newly formed molecules online and in situ utilizing Fourier transform infrared spectroscopy complemented by temperature-programmed desorption studies with single-photon photoionization reflectron time-of-flight mass spectrometry, the synthesis of hydroxylamine (NH2OH), water (H2O), hydrogen peroxide (H2O2), nitrosyl hydride (HNO), and a series of nitrogen oxides (NO, N2O, NO2, N2O2, N2O3) was evident. The synthetic pathway of the newly formed species, along with their rate constants, is discussed exploiting the kinetic fitting of the coupled differential equations representing the decomposition steps in the irradiated ice mixtures. Our studies suggest the hydroxylamine is likely formed through an insertion mechanism of suprathermal oxygen into the nitrogen-hydrogen bond of ammonia at such low temperatures. An isotope-labeled experiment examining the electron-irradiated D3-ammonia-oxygen (ND3-O2) ices was also conducted, which confirmed our findings. This study provides clear, concise evidence of the formation of hydroxylamine by irradiation of interstellar analogue ices and can help explain the question how potential precursors to complex biorelevant molecules may form in the interstellar medium.

12.
Chemphyschem ; 18(8): 882-889, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28129476

RESUMO

Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) combined with electronic structure calculations, it is shown that the hitherto elusive silylketene molecule (H3 SiC(H)=C=O)-the isovalent counterpart of the well-known methylketene molecule-is forming via interaction of energetic electrons with low-temperature silane-carbon monoxide ices. In combination with the infrared spectroscopically detected triplet dicarbon monoxide reactant, electronic structure calculations suggest that dicarbon monoxide reacts with silane via a de facto insertion of the terminal carbon atom into a silicon-hydrogen single bond. This is followed by non-adiabatic reaction dynamics triggered by the heavy silicon atom intersystem crossing from the triplet to the singlet manifold, eventually leading to the formation of silylketene. The non-equilibrium nature of the elementary reactions within the exposed ices results in an exciting and novel chemistry which cannot be explored via traditional preparative chemistry. Since the replacement of hydrogen in silane can introduce side groups such as silyl or alkyl, the reaction of triplet dicarbon monoxide with silane represents the parent system for a previously disregarded reaction class revealing an elegant path to access the largely reactive group of silylketenes.

13.
Rev Sci Instrum ; 88(12): 123110, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289197

RESUMO

We describe two improvements to an existing tandem mass spectrometer coupled to a laser vaporization cluster ion source suitable for photodissociation spectroscopy: (i) cooling of the cluster source nozzle and (ii) mass selection prior to the photodissociation region via replacing an octupole ion guide by a quadrupole mass spectrometer. The improved sensitivity and transmission enable the production of larger heteroatomic clusters as well as rare gas solvated clusters. We present two examples demonstrating the new capabilities of the improved setup. In the first application, cooling of the cluster source nozzle produces Si+Arn and Si2+Arn cluster cations with n = 1-25. Magic numbers are extracted from the mass spectrum by applying a transmission function obtained via simulations. In the second example, the vibronic photodissociation spectrum of cold Au4+ cluster ions is recorded with unprecedented detail, resolution, and sensitivity. Such high-resolution optical excitation spectra of metal cluster cations may serve as a benchmark for the performance of Franck-Condon simulations based on quantum chemical calculations for excited states.

14.
Inorg Chem ; 55(17): 8776-85, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27513820

RESUMO

A novel approach for the synthesis and identification of higher silanes (SinH2n+2, where n ≤ 19) is presented. Thin films of (d4-)silane deposited onto a cold surface were exposed under ultra-high-vacuum conditions to energetic electrons and sampled on line and in situ via infrared and ultraviolet-visible spectroscopy. Gas phase products released by fractional sublimation in the warm-up phase after the irradiation were probed via a reflectron time-of-flight mass spectrometer coupled with a tunable vacuum ultraviolet photon ionization source. The formation mechanisms of (higher) silanes were investigated by irradiating codeposited 1:1 silane (SiH4)/d4-silane (SiD4) ices, suggesting that both radical-radical recombination and radical insertion pathways contribute to the formation of disilane along with higher silanes up to nonadecasilane (Si19H40).

15.
Chemphyschem ; 17(17): 2726-35, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27344990

RESUMO

The remarkable versatility of triazenes in synthesis, polymer chemistry and pharmacology has led to numerous experimental and theoretical studies. Surprisingly, only very little is known about the most fundamental triazene: the parent molecule with the chemical formula N3 H3 . Here we observe molecular, isolated N3 H3 in the gas phase after it sublimes from energetically processed ammonia and nitrogen films. Combining theoretical studies with our novel detection scheme of photoionization-driven reflectron time-of-flight mass spectroscopy we can obtain information on the isomers of triazene formed in the films. Using isotopically labeled starting material, we can additionally gain insight in the formation pathways of the isomers of N3 H3 under investigation and identify the isomers formed as triazene (H2 NNNH) and possibly triimide (HNHNNH).


Assuntos
Amônia/química , Imidas/síntese química , Triazenos/síntese química , Raios Ultravioleta , Imidas/química , Marcação por Isótopo , Teoria Quântica , Triazenos/química
16.
Chemphyschem ; 16(15): 3139-42, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26331382

RESUMO

We report the detection of triazane (N3 H5 ) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3 ) and hydrazine (N2 H4 ) of fundamental importance for the understanding of the stability of single-bonded chains of nitrogen atoms and a potential key intermediate in hydrogen-nitrogen chemistry. The experimental results along with electronic-structure calculations reveal that triazane presents a stable molecule with a nitrogen-nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 µs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron-time-of-flight mass spectrometer. Isotopic substitution experiments exploiting [D3 ]-ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5 ]-triazane (N3 D5 ).

17.
J Chem Phys ; 138(23): 234306, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23802959

RESUMO

The angular distribution of photoelectrons emitted from water clusters has been measured by linearly polarized synchrotron radiation of 40 and 60 eV photon energy. Results are given for the three outermost valence orbitals. The emission patterns are found more isotropic than for isolated molecules. While a simple scattering model is able to explain most of the deviation from molecular behavior, some of our data also suggest an intrinsic change of the angular distribution parameter. The angular distribution function was mapped by rotating the axis of linear polarization of the synchrotron radiation.

18.
Phys Rev Lett ; 106(3): 033402, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405273

RESUMO

Electron-electron coincidence spectra of Ar-Kr clusters after photoionization have been measured. An electron with the kinetic energy range from 0 to approximately 1 eV is found in coincidence with the Ar 3s cluster photoelectron. The low kinetic energy electron can be attributed to an Ar + Kr+ + Kr+ final state which forms after electron transfer mediated decay. This autoionization mechanism results from a concerted transition involving three different atoms in a van der Waals cluster; it was predicted theoretically, but hitherto not observed.

19.
J Chem Phys ; 134(7): 074306, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21341843

RESUMO

We report the occurrence of interatomic Coulombic decay (ICD) in mixed NeKr clusters. A well-defined feature ranging from 9 to 12 eV in kinetic energy is observed in coincidence with the Ne 2s photoelectrons. It derives from an ICD process, in which an initial Ne 2s vacancy is filled by a Ne 2p electron and an electron is emitted from a 4p level on a neighboring Kr atom. We have studied the dependence of the effect on photon energy, cluster composition, and cluster size. Interestingly, the ICD electron energy increases slightly and grows a shoulder on going from 2% to 5% Kr in the coexpansion process, which we interpret in terms of surface versus bulk effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...