Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4860, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418580

RESUMO

Laparoscopic hysterectomy is a commonly performed procedure. However, one high-risk complication is vaginal cuff dehiscence. Currently, there is no standardization regarding thread material or suturing technique for vaginal cuff closure. Therefore, this study aimed to compare extracorporeal and intracorporeal suturing techniques for vaginal cuff closure using a pelvic trainer model. Eighteen experts in laparoscopic surgery performed vaginal cuff closures with interrupted sutures using intracorporeal knotting, extracorporeal knotting and continuous, unidirectional barbed sutures. While using an artificial tissue suturing pad in a pelvic trainer, experts performed vaginal cuff closure using each technique according to block randomization. Task completion time, tension resistance, and the number of errors were recorded. After completing the exercises, participants answered a questionnaire concerning the suturing techniques and their performance. Experts completed suturing more quickly (p < 0.001, p < 0.001, respectively) and with improved tension resistance (p < 0.001, p < 0.001) when using barbed suturing compared to intracorporeal and extracorporeal knotting. Furthermore, the intracorporeal knotting technique was performed faster (p = 0.04) and achieved greater tension resistance (p = 0.023) compared to extracorporeal knotting. The number of laparoscopic surgeries performed per year was positively correlated with vaginal cuff closure duration (p = 0.007). Barbed suturing was a time-saving technique with improved tension resistance for vaginal cuff closure.


Assuntos
Laparoscopia , Vagina , Feminino , Humanos , Histerectomia/métodos , Laparoscopia/métodos , Técnicas de Sutura , Suturas , Resultado do Tratamento , Vagina/cirurgia
2.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164272

RESUMO

O-Methylated benzoxazinoids (BXs) and flavonoids are widespread defenses against herbivores and pathogens in the grasses (Poaceae). Recently, two flavonoid O-methyltransferases (FOMTs), ZmFOMT2 and ZmFOMT3, have been reported to produce phytoalexins in maize (Zea mays). ZmFOMT2 and ZmFOMT3 are closely related to the BX O-methyltransferases (OMTs) ZmBX10-12 and ZmBX14, suggesting a common evolutionary origin in the Poaceae. Here, we studied the evolution and enzymatic requirements of flavonoid and BX O-methylation activities in more detail. Using BLAST searches and phylogenetic analyses, we identified enzymes homologous to ZmFOMT2 and ZmFOMT3, ZmBX10-12, and ZmBX14 in several grasses, with the most closely related candidates found almost exclusively in species of the Panicoideae subfamily. Biochemical characterization of candidate enzymes from sorghum (Sorghum bicolor), sugar cane (Saccharum spp.), and teosinte (Zea nicaraguensis) revealed either flavonoid 5-O-methylation activity or DIMBOA-Glc 4-O-methylation activity. However, DIMBOA-Glc 4-OMTs from maize and teosinte also accepted flavonols as substrates and converted them to 3-O-methylated derivatives, suggesting an evolutionary relationship between these two activities. Homology modeling, sequence comparisons, and site-directed mutagenesis led to the identification of active site residues crucial for FOMT and BX OMT activity. However, the full conversion of ZmFOMT2 activity into BX OMT activity by switching these residues was not successful. Only trace O-methylation of BXs was observed, indicating that amino acids outside the active site cavity are also involved in determining the different substrate specificities. Altogether, the results of our study suggest that BX OMTs have evolved from the ubiquitous FOMTs in the PACMAD clade of the grasses through a complex series of amino acid changes.


Assuntos
Benzoxazinas/metabolismo , Glucosídeos/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Evolução Molecular , Metilação , Metiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Poaceae/genética , Especificidade por Substrato
3.
Plant Physiol ; 188(1): 167-190, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718797

RESUMO

Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.


Assuntos
Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/fisiologia , Flavonoides/metabolismo , Fusarium/patogenicidade , Metiltransferases/metabolismo , Zea mays/metabolismo , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Zea mays/microbiologia
4.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930840

RESUMO

Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto-enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.


Assuntos
Cimenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Lamiaceae/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Timol/análogos & derivados , Timol/metabolismo , Cimenos/química , Sistema Enzimático do Citocromo P-450/genética , Lamiaceae/enzimologia , Lamiaceae/genética , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redutases-Desidrogenases de Cadeia Curta/genética , Timol/química
5.
Plant Cell Environ ; 42(6): 1950-1963, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30737807

RESUMO

Volatile organic compounds (VOCs) emitted by plant leaves can influence the physiology of neighbouring plants. In contrast to leaf VOCs, little is known about the role of root VOCs in plant-plant interactions. Here, we characterize constitutive root VOC emissions of the spotted knapweed (Centaurea stoebe) and explore the impact of these VOCs on the germination and growth of different sympatric plant species. We show that C. stoebe roots emit high amounts of sesquiterpenes, with estimated release rates of (E)-ß-caryophyllene above 3 µg g-1  dw hr-1 . Sesquiterpene emissions show little variation between different C. stoebe populations but vary substantially between different Centaurea species. Through root transcriptome sequencing, we identify six root-expressed sesquiterpene synthases (TPSs). Two root-specific TPSs, CsTPS4 and CsTPS5, are sufficient to produce the full blend of emitted root sesquiterpenes. VOC-exposure experiments demonstrate that C. stoebe root VOCs have neutral to positive effects on the germination and growth of different sympatric neighbours. Thus, constitutive root sesquiterpenes produced by two C. stoebe TPSs are associated with facilitation of sympatric neighbouring plants. The release of root VOCs may thus influence plant community structure in nature.


Assuntos
Centaurea/metabolismo , Germinação/fisiologia , Raízes de Plantas/metabolismo , Sesquiterpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/efeitos dos fármacos , Sesquiterpenos Policíclicos/metabolismo , Análise de Sequência , Terpenos/metabolismo , Transcriptoma , Compostos Orgânicos Voláteis/farmacologia
6.
Entropy (Basel) ; 20(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-33265735

RESUMO

Compositionally complex alloys, or high entropy alloys, are good candidates for applications at higher temperatures in gas turbines. After their introduction, the equiatomic Al17Co17Cr17Cu17Fe17Ni17 (at.%) served as a starting material and a long optimization road finally led to the recently optimized Al10Co25Cr8Fe15Ni36Ti6 (at.%) alloy, which shows promising mechanical properties. Investigations of the as-cast state and after different heat treatments focus on the evolution of the microstructure and provide an overview of some mechanical properties. The dendritic solidification provides two phases in the dendritic cores and two different ones in the interdendritic regions. Three of the four phases remain after heat treatments. Homogenization and subsequent annealing produce a γ-γ' based microstructure, similar to Ni-based superalloys. The γ phase is Co-Cr-Fe rich and the γ' phase is Al-Ni-Ti rich. The understanding of the mechanical behavior of the investigated alloy is supported and enhanced by the study of the different phases and their nanohardness measurements. The observations are compared with mechanical and microstructural data from commercial Ni-based superalloys, Co-based alloys, and Co-Ni-based alloys at the desired application temperature of ~800 °C.

7.
J Biomech Eng ; 132(8): 081002, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20670051

RESUMO

In this paper, we develop structured tree outflow boundary conditions for modeling the airflow in patient specific human lungs. The utilized structured tree is used to represent the nonimageable vessels beyond the 3D domain. The coupling of the two different scales (1D and 3D) employs a Dirichlet-Neumann approach. The simulations are performed under a variety of conditions such as light breathing and constant flow ventilation (which is characterized by very rapid acceleration and deceleration). All results show that the peripheral vessels significantly impact the pressure, however, the flow is relatively unaffected, reinforcing the fact that the majority of the lung impedance is due to the lower generations rather than the peripheral vessels. Furthermore, simulations of a hypothetical diseased lung (restricted flow in the superior left lobe) under mechanical ventilation show that the mean pressure at the outlets of the 3D domain is about 28% higher. This hypothetical model illustrates potential causes of volutrauma in the human lung and furthermore demonstrates how different clinical scenarios can be studied without the need to assume the unknown flow distribution into the downstream region.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Pulmão/fisiologia , Modelos Biológicos , Ventilação Pulmonar/fisiologia , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...